Cargando…
A human-centered safe robot reinforcement learning framework with interactive behaviors
Deployment of Reinforcement Learning (RL) algorithms for robotics applications in the real world requires ensuring the safety of the robot and its environment. Safe Robot RL (SRRL) is a crucial step toward achieving human-robot coexistence. In this paper, we envision a human-centered SRRL framework...
Autores principales: | Gu, Shangding, Kshirsagar, Alap, Du, Yali, Chen, Guang, Peters, Jan, Knoll, Alois |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665848/ https://www.ncbi.nlm.nih.gov/pubmed/38023448 http://dx.doi.org/10.3389/fnbot.2023.1280341 |
Ejemplares similares
-
Perception-Action Coupling Target Tracking Control for a Snake Robot via Reinforcement Learning
por: Bing, Zhenshan, et al.
Publicado: (2020) -
Human Preferences for Robot Eye Gaze in Human-to-Robot Handovers
por: Faibish, Tair, et al.
Publicado: (2022) -
Editorial: Neuromorphic engineering for robotics
por: Bing, Zhenshan, et al.
Publicado: (2023) -
Toward robust and scalable deep spiking reinforcement learning
por: Akl, Mahmoud, et al.
Publicado: (2023) -
The Neurorobotics Platform Robot Designer: Modeling Morphologies for Embodied Learning Experiments
por: Feldotto, Benedikt, et al.
Publicado: (2022)