Cargando…
Clostridioides difficile infection surveillance in intensive care units and oncology wards using machine learning
OBJECTIVE: Screening individuals admitted to the hospital for Clostridioides difficile presents opportunities to limit transmission and hospital-onset C. difficile infection (HO-CDI). However, detection from rectal swabs is resource intensive. In contrast, machine learning (ML) models may accurately...
Autores principales: | Ötleş, Erkin, Balczewski, Emily A., Keidan, Micah, Oh, Jeeheh, Patel, Alieysa, Young, Vincent B., Rao, Krishna, Wiens, Jenna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665879/ https://www.ncbi.nlm.nih.gov/pubmed/37088695 http://dx.doi.org/10.1017/ice.2023.54 |
Ejemplares similares
-
17. Comparative Assessment of a Machine Learning Model and Rectal Swab Surveillance to Predict Hospital Onset Clostridioides difficile
por: Ötleş, Erkin, et al.
Publicado: (2021) -
Using Machine Learning and the Electronic Health Record to Predict Complicated Clostridium difficile Infection
por: Li, Benjamin Y, et al.
Publicado: (2019) -
Longitudinal genomic surveillance of carriage and transmission of Clostridioides difficile in an intensive care unit
por: Miles-Jay, Arianna, et al.
Publicado: (2023) -
Proton Pump Inhibitor-Induced Gut Dysbiosis Increases Mortality Rates for Patients with Clostridioides difficile Infection
por: Lin, Cheng-Yu, et al.
Publicado: (2022) -
Systemic Inflammatory Mediators Are Effective Biomarkers for Predicting Adverse Outcomes in Clostridioides difficile Infection
por: Dieterle, Michael G., et al.
Publicado: (2020)