Cargando…

Mapping of 20 L capacity ultrasonic reactor using cavitation activity meter and dye degradation

Mapping of a novel 20 L capacity ultrasonic (US) reactor having a total of 44 transducers was done by measuring the local cavitation intensity using a cavitation activity meter at different horizontal planes and subsequent validation based on dye degradation. A fixed frequency of 33 kHz and temperat...

Descripción completa

Detalles Bibliográficos
Autores principales: Joshi, Shubham, Agarkoti, Chandrodai, Gogate, Parag R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665945/
https://www.ncbi.nlm.nih.gov/pubmed/37952469
http://dx.doi.org/10.1016/j.ultsonch.2023.106688
Descripción
Sumario:Mapping of a novel 20 L capacity ultrasonic (US) reactor having a total of 44 transducers was done by measuring the local cavitation intensity using a cavitation activity meter at different horizontal planes and subsequent validation based on dye degradation. A fixed frequency of 33 kHz and temperature of 30 °C was used during the mapping performed at two different power levels of 250 W and 400 W. In addition, the mapping of specific plane 2 was also performed with transducers operating on walls 1 and 3, while switching the transducers on walls 2 and 4 off and vice versa so as to establish the role of using multiple transducers. Degradation of RO4 dye was also measured at the plane 2 at various powers as 250 W, 400 W, and 1000 W. The degradation of the RO4 dye directly correlated to the cavitation intensity measured at the various location inside the US reactor. The average cavitation intensity was 265.38, 317.25, 185, and 300.5 Cavins for power dissipations of 250 W, 400 W, 250 W (wall 1 and 3 transducers in operation), and 400 W (wall 2 and 4 transducers in operation), respectively. Correspondingly, the average degradation was 10.35 %, 13.03 %, 5.52 %, and 8.9 % for same sequence of operational power and transducers. The investigation amply illustrated dependency of the cavitational activity on the location, power dissipation, and operating mode elucidating important design related information useful for scale up of sonochemical reactors.