Cargando…
Geometric and Hydrophilic Effects of Oxirane Compounds with a Four-Carbon Backbone on Clathrate Hydrate Formation
[Image: see text] The physicochemical properties of clathrate hydrates are influenced by the chemical nature and three-dimensional (3D) geometry of the added molecules. This study investigates the effects of five oxirane compounds: cis-2,3-epoxybutane (c23EB), trans-2,3-epoxybutane (t23EB), 1,2-epox...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666149/ https://www.ncbi.nlm.nih.gov/pubmed/38027340 http://dx.doi.org/10.1021/acsomega.3c05901 |
Sumario: | [Image: see text] The physicochemical properties of clathrate hydrates are influenced by the chemical nature and three-dimensional (3D) geometry of the added molecules. This study investigates the effects of five oxirane compounds: cis-2,3-epoxybutane (c23EB), trans-2,3-epoxybutane (t23EB), 1,2-epoxybutane (12EB), 1,2,3,4-diepoxybutane (DEB), and 3,3-dimethylepoxybutane (33DMEB) on CH(4) hydrate formation. Despite having a four-carbon backbone, these compounds differ in their 3D geometries. The structures and stabilities of CH(4) hydrates containing each compound were analyzed using high-resolution powder diffraction, solid-state (13)C NMR, and phase equilibrium measurements. The experimental results revealed that c23EB, 12EB, and 33DMEB act as sII/sH hydrate formers and thermodynamic promoters, whereas t23EB and DEB have opposite roles. These results were analyzed in relation to the 3D geometries and relative stabilities of various rotational isomers using DFT calculations. Hydrate structure was influenced by both the length and thickness of the added compounds. Moreover, an appropriate level of (not excessive) hydrophilicity induced by an oxirane group appeared to enhance the thermodynamic stability of the hydrates. This study provides insights into how the chemical nature of additives influences the structure and stability of clathrate hydrates. |
---|