Cargando…
Machine Learning Approaches to Investigate the Structure–Activity Relationship of Angiotensin-Converting Enzyme Inhibitors
[Image: see text] Angiotensin-converting enzyme inhibitors (ACEIs) play a crucial role in treating conditions such as hypertension, heart failure, and kidney diseases. Nevertheless, the ACEIs currently available on the market are linked to a variety of adverse effects including renal insufficiency,...
Autores principales: | Yu, Tianshi, Nantasenamat, Chanin, Anuwongcharoen, Nuttapat, Piacham, Theeraphon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666249/ https://www.ncbi.nlm.nih.gov/pubmed/38027387 http://dx.doi.org/10.1021/acsomega.3c03225 |
Ejemplares similares
-
Machine learning approaches to study the structure-activity relationships of LpxC inhibitors
por: Yu, Tianshi, et al.
Publicado: (2023) -
Cheminformatic
Analysis and Machine Learning Modeling
to Investigate Androgen Receptor Antagonists to Combat Prostate Cancer
por: Yu, Tianshi, et al.
Publicado: (2023) -
Towards combating antibiotic resistance by exploring the quantitative structure-activity relationship of NDM-1 inhibitors
por: Yu, Tianshi, et al.
Publicado: (2022) -
Exploring the Chemical Space of CYP17A1 Inhibitors Using Cheminformatics and Machine Learning
por: Yu, Tianshi, et al.
Publicado: (2023) -
Synthesis and computational investigation of molecularly imprinted nanospheres for selective recognition of alpha-tocopherol succinate
por: Piacham, Theeraphon, et al.
Publicado: (2013)