Cargando…
Iterative Approach of Experiment–Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO(x) Selective Reduction Catalysts
[Image: see text] An iterative approach between machine learning (ML) and laboratory experiments was developed to accelerate the design and synthesis of environmental catalysts (ECs) using selective catalytic reduction (SCR) of nitrogen oxides (NO(x)) as an example. The main steps in the approach in...
Autores principales: | Chen, Yulong, Feng, Jia, Wang, Xin, Zhang, Cheng, Ke, Dongfang, Zhu, Huiyan, Wang, Shuai, Suo, Hongri, Liu, Chongxuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666265/ https://www.ncbi.nlm.nih.gov/pubmed/37393584 http://dx.doi.org/10.1021/acs.est.3c00293 |
Ejemplares similares
-
Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction
por: Wan, Xuhao, et al.
Publicado: (2022) -
Diffusion and catalyst efficiency in hierarchical zeolite catalysts
por: Peng, Peng, et al.
Publicado: (2020) -
Regeneration of Selective Catalyst Reduction Catalysts
Deactivated by Pb, As, and Alkali Metals
por: Li, Jingxin, et al.
Publicado: (2020) -
Experimental Research on Distribution Characteristics
of NO(x) Conversion Efficiency of a Diesel
Engine SCR Catalyst
por: Wang, Zhancheng, et al.
Publicado: (2021) -
Small Reduced Graphene Oxides for Highly Efficient Oxygen Reduction Catalysts
por: Bak, Su-Jeong, et al.
Publicado: (2021)