Cargando…
Using Explainable Machine Learning to Interpret the Effects of Policies on Air Pollution: COVID-19 Lockdown in London
[Image: see text] Activity changes during the COVID-19 lockdown present an opportunity to understand the effects that prospective emission control and air quality management policies might have on reducing air pollution. Using a regression discontinuity design for causal analysis, we show that the f...
Autores principales: | Ma, Liang, Graham, Daniel J., Stettler, Marc E. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666281/ https://www.ncbi.nlm.nih.gov/pubmed/37566731 http://dx.doi.org/10.1021/acs.est.2c09596 |
Ejemplares similares
-
Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning()
por: Lovrić, Mario, et al.
Publicado: (2021) -
Changes in air pollutants during the COVID-19 lockdown in Beijing: Insights from a machine-learning technique and implications for future control policy
por: Hu, Jiabao, et al.
Publicado: (2021) -
Explainable and interpretable models in computer vision and machine learning
por: Escalante, Hugo Jair, et al.
Publicado: (2019) -
Editorial: Interpretable and explainable machine learning models in oncology
por: Hrinivich, William Thomas, et al.
Publicado: (2023) -
Differential impact of government lockdown policies on reducing air pollution levels and related mortality in Europe
por: Schneider, Rochelle, et al.
Publicado: (2022)