Cargando…

Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population

OBJECTIVE: The Triglyceride-glucose (TyG) index, a novel indicator of insulin resistance, has been associated with mortality from coronary artery diseases, ischemic stroke, and heart failure. In recent years, much emphasis has been placed on the relationship between the TyG index and mortality in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jiaqi, Wu, Kangxiang, Lin, Yiying, Huang, Mingyuan, Xie, Shanghe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666367/
https://www.ncbi.nlm.nih.gov/pubmed/37993902
http://dx.doi.org/10.1186/s12933-023-02054-5
_version_ 1785148934098780160
author Chen, Jiaqi
Wu, Kangxiang
Lin, Yiying
Huang, Mingyuan
Xie, Shanghe
author_facet Chen, Jiaqi
Wu, Kangxiang
Lin, Yiying
Huang, Mingyuan
Xie, Shanghe
author_sort Chen, Jiaqi
collection PubMed
description OBJECTIVE: The Triglyceride-glucose (TyG) index, a novel indicator of insulin resistance, has been associated with mortality from coronary artery diseases, ischemic stroke, and heart failure. In recent years, much emphasis has been placed on the relationship between the TyG index and mortality in the general population. However, the impact of age on the association between TyG and all-cause and cardiovascular mortality remains controversial. This study investigated the link between the TyG index and all-cause and cardiovascular mortality, emphasizing differences between older and non-older populations. METHODS: Data from the National Health and Nutrition Examination Survey (2009–2018), encompassing 20,194 participants, were analyzed. The baseline TyG index was calculated as Ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. Multivariate Cox proportional hazards regression models with restricted cubic splines and trend tests were employed to explore the association between the TyG index and all-cause and cardiovascular mortality, with emphasis on age-specific analysis. Subgroup analysis was conducted to examine whether the TyG index's association with mortality varied across different subgroups. Additionally, receiver operating characteristic curves were used to compare the predictive ability of the TyG index with the homeostasis model assessment of insulin resistance (HOMA-IR) for all-cause and cardiovascular mortality. RESULTS: Over a median follow-up period of 105 months, all-cause mortality accounted for 13.345% of cases, and cardiovascular mortality accounted for 3.387%. Kaplan–Meier curves showed a significant increase in all-cause and cardiovascular mortality with higher TyG index values (both P for log-rank test < 0.001). However, during Cox proportional hazards regression analysis, no linear trend was observed between the TyG index and all-cause or cardiovascular mortality after adjusting for confounding factors (all-cause mortality: P for trend = 0.424; cardiovascular mortality: P for trend = 0.481). Restricted cubic splines revealed a non-linear association between the baseline TyG index and all-cause and cardiovascular mortality in the overall population (all-cause mortality: Non-linear P = 0.003; cardiovascular mortality: Non-linear P = 0.034). The effect of the TyG index was consistent across most subgroups in terms of all-cause and cardiovascular mortality, with no significant interaction with randomized factors (all-cause mortality: P for interaction = 0.077–0.940, cardiovascular mortality: P for interaction = 0.173–0.987), except for the age subgroup (all-cause mortality: P for interaction < 0.001, cardiovascular mortality: P for interaction < 0.001). Further age-specific analysis revealed that the association between the TyG index and all-cause and cardiovascular mortality remained significant in patients aged < 65 but not in those aged ≥ 65. Interestingly, a non-linear association was observed between the TyG index and all-cause mortality in individuals aged < 65 (Non-linear P = 0.011), while a linear relationship was observed with cardiovascular mortality, showing an upward trend (Non-linear P = 0.742, P for trend = 0.010). Further stratification according to age yielded similar results only in patients aged 45–64 (all-cause mortality: Non-linear P = 0.001 and cardiovascular mortality: Non-linear P = 0.902, P for trend = 0.015). Compared to HOMA-IR, the TyG index demonstrated superior predictive performance for all-cause and cardiovascular mortality (all-cause mortality: 0.620 vs. 0.524, P < 0.001; cardiovascular mortality: 0.623 vs. 0.537, P < 0.001). CONCLUSIONS: This study established a significant association between the TyG index and all-cause and cardiovascular mortality in the general population, particularly among individuals aged < 65. Notably, a non-linear association with all-cause mortality was observed in those aged < 65, while a linear relationship with cardiovascular mortality was found. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12933-023-02054-5.
format Online
Article
Text
id pubmed-10666367
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-106663672023-11-22 Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population Chen, Jiaqi Wu, Kangxiang Lin, Yiying Huang, Mingyuan Xie, Shanghe Cardiovasc Diabetol Research OBJECTIVE: The Triglyceride-glucose (TyG) index, a novel indicator of insulin resistance, has been associated with mortality from coronary artery diseases, ischemic stroke, and heart failure. In recent years, much emphasis has been placed on the relationship between the TyG index and mortality in the general population. However, the impact of age on the association between TyG and all-cause and cardiovascular mortality remains controversial. This study investigated the link between the TyG index and all-cause and cardiovascular mortality, emphasizing differences between older and non-older populations. METHODS: Data from the National Health and Nutrition Examination Survey (2009–2018), encompassing 20,194 participants, were analyzed. The baseline TyG index was calculated as Ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. Multivariate Cox proportional hazards regression models with restricted cubic splines and trend tests were employed to explore the association between the TyG index and all-cause and cardiovascular mortality, with emphasis on age-specific analysis. Subgroup analysis was conducted to examine whether the TyG index's association with mortality varied across different subgroups. Additionally, receiver operating characteristic curves were used to compare the predictive ability of the TyG index with the homeostasis model assessment of insulin resistance (HOMA-IR) for all-cause and cardiovascular mortality. RESULTS: Over a median follow-up period of 105 months, all-cause mortality accounted for 13.345% of cases, and cardiovascular mortality accounted for 3.387%. Kaplan–Meier curves showed a significant increase in all-cause and cardiovascular mortality with higher TyG index values (both P for log-rank test < 0.001). However, during Cox proportional hazards regression analysis, no linear trend was observed between the TyG index and all-cause or cardiovascular mortality after adjusting for confounding factors (all-cause mortality: P for trend = 0.424; cardiovascular mortality: P for trend = 0.481). Restricted cubic splines revealed a non-linear association between the baseline TyG index and all-cause and cardiovascular mortality in the overall population (all-cause mortality: Non-linear P = 0.003; cardiovascular mortality: Non-linear P = 0.034). The effect of the TyG index was consistent across most subgroups in terms of all-cause and cardiovascular mortality, with no significant interaction with randomized factors (all-cause mortality: P for interaction = 0.077–0.940, cardiovascular mortality: P for interaction = 0.173–0.987), except for the age subgroup (all-cause mortality: P for interaction < 0.001, cardiovascular mortality: P for interaction < 0.001). Further age-specific analysis revealed that the association between the TyG index and all-cause and cardiovascular mortality remained significant in patients aged < 65 but not in those aged ≥ 65. Interestingly, a non-linear association was observed between the TyG index and all-cause mortality in individuals aged < 65 (Non-linear P = 0.011), while a linear relationship was observed with cardiovascular mortality, showing an upward trend (Non-linear P = 0.742, P for trend = 0.010). Further stratification according to age yielded similar results only in patients aged 45–64 (all-cause mortality: Non-linear P = 0.001 and cardiovascular mortality: Non-linear P = 0.902, P for trend = 0.015). Compared to HOMA-IR, the TyG index demonstrated superior predictive performance for all-cause and cardiovascular mortality (all-cause mortality: 0.620 vs. 0.524, P < 0.001; cardiovascular mortality: 0.623 vs. 0.537, P < 0.001). CONCLUSIONS: This study established a significant association between the TyG index and all-cause and cardiovascular mortality in the general population, particularly among individuals aged < 65. Notably, a non-linear association with all-cause mortality was observed in those aged < 65, while a linear relationship with cardiovascular mortality was found. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12933-023-02054-5. BioMed Central 2023-11-22 /pmc/articles/PMC10666367/ /pubmed/37993902 http://dx.doi.org/10.1186/s12933-023-02054-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Chen, Jiaqi
Wu, Kangxiang
Lin, Yiying
Huang, Mingyuan
Xie, Shanghe
Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population
title Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population
title_full Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population
title_fullStr Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population
title_full_unstemmed Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population
title_short Association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population
title_sort association of triglyceride glucose index with all-cause and cardiovascular mortality in the general population
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666367/
https://www.ncbi.nlm.nih.gov/pubmed/37993902
http://dx.doi.org/10.1186/s12933-023-02054-5
work_keys_str_mv AT chenjiaqi associationoftriglycerideglucoseindexwithallcauseandcardiovascularmortalityinthegeneralpopulation
AT wukangxiang associationoftriglycerideglucoseindexwithallcauseandcardiovascularmortalityinthegeneralpopulation
AT linyiying associationoftriglycerideglucoseindexwithallcauseandcardiovascularmortalityinthegeneralpopulation
AT huangmingyuan associationoftriglycerideglucoseindexwithallcauseandcardiovascularmortalityinthegeneralpopulation
AT xieshanghe associationoftriglycerideglucoseindexwithallcauseandcardiovascularmortalityinthegeneralpopulation