Cargando…
Graph Machine Learning for Improved Imputation of Missing Tropospheric Ozone Data
[Image: see text] Gaps in the measurement series of atmospheric pollutants can impede the reliable assessment of their impacts and trends. We propose a new method for missing data imputation of the air pollutant tropospheric ozone by using the graph machine learning algorithm “correct and smooth”. T...
Autores principales: | Betancourt, Clara, Li, Cathy W. Y., Kleinert, Felix, Schultz, Martin G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666531/ https://www.ncbi.nlm.nih.gov/pubmed/37661931 http://dx.doi.org/10.1021/acs.est.3c05104 |
Ejemplares similares
-
Tropospheric Ozone Concentration on the Territory of Russia in 2021
por: Andreev, V. V., et al.
Publicado: (2022) -
Trends of Rural Tropospheric Ozone at the Northwest of the Iberian Peninsula
por: Saavedra, S., et al.
Publicado: (2012) -
SICE: an improved missing data imputation technique
por: Khan, Shahidul Islam, et al.
Publicado: (2020) -
The Optimal Machine Learning-Based Missing Data Imputation for the Cox Proportional Hazard Model
por: Guo, Chao-Yu, et al.
Publicado: (2021) -
Imputation by feature importance (IBFI): A methodology to envelop machine learning method for imputing missing patterns in time series data
por: Mir, Adil Aslam, et al.
Publicado: (2022)