Cargando…
Potential for Machine Learning to Address Data Gaps in Human Toxicity and Ecotoxicity Characterization
[Image: see text] Machine Learning (ML) is increasingly applied to fill data gaps in assessments to quantify impacts associated with chemical emissions and chemicals in products. However, the systematic application of ML-based approaches to fill chemical data gaps is still limited, and their potenti...
Autores principales: | von Borries, Kerstin, Holmquist, Hanna, Kosnik, Marissa, Beckwith, Katie V., Jolliet, Olivier, Goodman, Jonathan M., Fantke, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666540/ https://www.ncbi.nlm.nih.gov/pubmed/37914529 http://dx.doi.org/10.1021/acs.est.3c05300 |
Ejemplares similares
-
Probabilistic Points of Departure and Reference Doses for Characterizing Human Noncancer and Developmental/Reproductive Effects for 10,145 Chemicals
por: Aurisano, Nicolò, et al.
Publicado: (2023) -
Splitting species sensitivity distributions (SSD) to improve accuracy of ecotoxicity results
por: Oginah, S.A., et al.
Publicado: (2021) -
Linking freshwater ecotoxicity to damage on ecosystem services in life cycle assessment
por: Oginah, Susan A., et al.
Publicado: (2023) -
An
(Eco)Toxicity Life Cycle Impact Assessment Framework
for Per- And Polyfluoroalkyl Substances
por: Holmquist, Hanna, et al.
Publicado: (2020) -
Correction
to “An (Eco)Toxicity Life Cycle
Impact Assessment Framework for Per- And Polyfluoroalkyl Substances”
por: Holmquist, Hanna, et al.
Publicado: (2020)