Cargando…
Advancing Computational Toxicology by Interpretable Machine Learning
[Image: see text] Chemical toxicity evaluations for drugs, consumer products, and environmental chemicals have a critical impact on human health. Traditional animal models to evaluate chemical toxicity are expensive, time-consuming, and often fail to detect toxicants in humans. Computational toxicol...
Autores principales: | Jia, Xuelian, Wang, Tong, Zhu, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666545/ https://www.ncbi.nlm.nih.gov/pubmed/37224004 http://dx.doi.org/10.1021/acs.est.3c00653 |
Ejemplares similares
-
Explainable and interpretable models in computer vision and machine learning
por: Escalante, Hugo Jair, et al.
Publicado: (2019) -
Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction
por: Lee, Hyunkwang, et al.
Publicado: (2019) -
The reference values in the interpretation of toxicological data
por: Iavicoli, Ivo, et al.
Publicado: (2019) -
Interpretable machine learning for genomics
por: Watson, David S.
Publicado: (2021) -
Interpretable Machine Learning with Python
por: Masis, Serg
Publicado: (2021)