Cargando…
Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET)
Aim Despite a vast number of articles on radiomics and machine learning in positron emission tomography (PET) imaging, clinical applicability remains limited, partly owing to poor methodological quality. We therefore systematically investigated the methodology described in publications on radiomics...
Autores principales: | Rogasch, Julian Manuel Michael, Shi, Kuangyu, Kersting, David, Seifert, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Georg Thieme Verlag KG
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667066/ https://www.ncbi.nlm.nih.gov/pubmed/37995708 http://dx.doi.org/10.1055/a-2198-0545 |
Ejemplares similares
-
Ability of (18)F-FDG Positron Emission Tomography Radiomics and Machine Learning in Predicting KRAS Mutation Status in Therapy-Naive Lung Adenocarcinoma
por: Zhang, Ruiyun, et al.
Publicado: (2023) -
Experimental phantom evaluation to identify robust positron emission tomography (PET) radiomic features
por: Carles, Montserrat, et al.
Publicado: (2021) -
Editorial: Artificial Intelligence in Positron Emission Tomography
por: Fang, Hanyi, et al.
Publicado: (2022) -
Transcriptomics in cancer revealed by Positron Emission Tomography radiomics
por: Tixier, Florent, et al.
Publicado: (2020) -
Positron Emission Tomography (PET) in Oncology
por: Gallamini, Andrea, et al.
Publicado: (2014)