Cargando…

Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer

OBJECTIVES: To develop and validate a multiparametric model to predict neoadjuvant treatment response in rectal cancer at baseline using a heterogeneous multicenter MRI dataset. METHODS: Baseline staging MRIs (T2W (T2-weighted)-MRI, diffusion-weighted imaging (DWI) / apparent diffusion coefficient (...

Descripción completa

Detalles Bibliográficos
Autores principales: Schurink, Niels W., van Kranen, Simon R., van Griethuysen, Joost J. M., Roberti, Sander, Snaebjornsson, Petur, Bakers, Frans C. H., de Bie, Shira H., Bosma, Gerlof P. T., Cappendijk, Vincent C., Geenen, Remy W. F., Neijenhuis, Peter A., Peterson, Gerald M., Veeken, Cornelis J., Vliegen, Roy F. A., Peters, Femke P., Bogveradze, Nino, el Khababi, Najim, Lahaye, Max J., Maas, Monique, Beets, Geerard L., Beets-Tan, Regina G. H., Lambregts, Doenja M. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667134/
https://www.ncbi.nlm.nih.gov/pubmed/37452176
http://dx.doi.org/10.1007/s00330-023-09920-6
_version_ 1785139184960274432
author Schurink, Niels W.
van Kranen, Simon R.
van Griethuysen, Joost J. M.
Roberti, Sander
Snaebjornsson, Petur
Bakers, Frans C. H.
de Bie, Shira H.
Bosma, Gerlof P. T.
Cappendijk, Vincent C.
Geenen, Remy W. F.
Neijenhuis, Peter A.
Peterson, Gerald M.
Veeken, Cornelis J.
Vliegen, Roy F. A.
Peters, Femke P.
Bogveradze, Nino
el Khababi, Najim
Lahaye, Max J.
Maas, Monique
Beets, Geerard L.
Beets-Tan, Regina G. H.
Lambregts, Doenja M. J.
author_facet Schurink, Niels W.
van Kranen, Simon R.
van Griethuysen, Joost J. M.
Roberti, Sander
Snaebjornsson, Petur
Bakers, Frans C. H.
de Bie, Shira H.
Bosma, Gerlof P. T.
Cappendijk, Vincent C.
Geenen, Remy W. F.
Neijenhuis, Peter A.
Peterson, Gerald M.
Veeken, Cornelis J.
Vliegen, Roy F. A.
Peters, Femke P.
Bogveradze, Nino
el Khababi, Najim
Lahaye, Max J.
Maas, Monique
Beets, Geerard L.
Beets-Tan, Regina G. H.
Lambregts, Doenja M. J.
author_sort Schurink, Niels W.
collection PubMed
description OBJECTIVES: To develop and validate a multiparametric model to predict neoadjuvant treatment response in rectal cancer at baseline using a heterogeneous multicenter MRI dataset. METHODS: Baseline staging MRIs (T2W (T2-weighted)-MRI, diffusion-weighted imaging (DWI) / apparent diffusion coefficient (ADC)) of 509 patients (9 centres) treated with neoadjuvant chemoradiotherapy (CRT) were collected. Response was defined as (1) complete versus incomplete response, or (2) good (Mandard tumor regression grade (TRG) 1–2) versus poor response (TRG3-5). Prediction models were developed using combinations of the following variable groups: (1) Non-imaging: age/sex/tumor-location/tumor-morphology/CRT-surgery interval (2) Basic staging: cT-stage/cN-stage/mesorectal fascia involvement, derived from (2a) original staging reports, or (2b) expert re-evaluation (3) Advanced staging: variables from 2b combined with cTN-substaging/invasion depth/extramural vascular invasion/tumor length (4) Quantitative imaging: tumour volume + first-order histogram features (from T2W-MRI and DWI/ADC) Models were developed with data from 6 centers (n = 412) using logistic regression with the Least Absolute Shrinkage and Selector Operator (LASSO) feature selection, internally validated using repeated (n = 100) random hold-out validation, and externally validated using data from 3 centers (n = 97). RESULTS: After external validation, the best model (including non-imaging and advanced staging variables) achieved an area under the curve of 0.60 (95%CI=0.48–0.72) to predict complete response and 0.65 (95%CI=0.53–0.76) to predict a good response. Quantitative variables did not improve model performance. Basic staging variables consistently achieved lower performance compared to advanced staging variables. CONCLUSIONS: Overall model performance was moderate. Best results were obtained using advanced staging variables, highlighting the importance of good-quality staging according to current guidelines. Quantitative imaging features had no added value (in this heterogeneous dataset). CLINICAL RELEVANCE STATEMENT: Predicting tumour response at baseline could aid in tailoring neoadjuvant therapies for rectal cancer. This study shows that image-based prediction models are promising, though are negatively affected by variations in staging quality and MRI acquisition, urging the need for harmonization. KEY POINTS: This multicenter study combining clinical information and features derived from MRI rendered disappointing performance to predict response to neoadjuvant treatment in rectal cancer. Best results were obtained with the combination of clinical baseline information and state-of-the-art image-based staging variables, highlighting the importance of good quality staging according to current guidelines and staging templates. No added value was found for quantitative imaging features in this multicenter retrospective study. This is likely related to acquisition variations, which is a major problem for feature reproducibility and thus model generalizability. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-023-09920-6.
format Online
Article
Text
id pubmed-10667134
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-106671342023-07-14 Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer Schurink, Niels W. van Kranen, Simon R. van Griethuysen, Joost J. M. Roberti, Sander Snaebjornsson, Petur Bakers, Frans C. H. de Bie, Shira H. Bosma, Gerlof P. T. Cappendijk, Vincent C. Geenen, Remy W. F. Neijenhuis, Peter A. Peterson, Gerald M. Veeken, Cornelis J. Vliegen, Roy F. A. Peters, Femke P. Bogveradze, Nino el Khababi, Najim Lahaye, Max J. Maas, Monique Beets, Geerard L. Beets-Tan, Regina G. H. Lambregts, Doenja M. J. Eur Radiol Imaging Informatics and Artificial Intelligence OBJECTIVES: To develop and validate a multiparametric model to predict neoadjuvant treatment response in rectal cancer at baseline using a heterogeneous multicenter MRI dataset. METHODS: Baseline staging MRIs (T2W (T2-weighted)-MRI, diffusion-weighted imaging (DWI) / apparent diffusion coefficient (ADC)) of 509 patients (9 centres) treated with neoadjuvant chemoradiotherapy (CRT) were collected. Response was defined as (1) complete versus incomplete response, or (2) good (Mandard tumor regression grade (TRG) 1–2) versus poor response (TRG3-5). Prediction models were developed using combinations of the following variable groups: (1) Non-imaging: age/sex/tumor-location/tumor-morphology/CRT-surgery interval (2) Basic staging: cT-stage/cN-stage/mesorectal fascia involvement, derived from (2a) original staging reports, or (2b) expert re-evaluation (3) Advanced staging: variables from 2b combined with cTN-substaging/invasion depth/extramural vascular invasion/tumor length (4) Quantitative imaging: tumour volume + first-order histogram features (from T2W-MRI and DWI/ADC) Models were developed with data from 6 centers (n = 412) using logistic regression with the Least Absolute Shrinkage and Selector Operator (LASSO) feature selection, internally validated using repeated (n = 100) random hold-out validation, and externally validated using data from 3 centers (n = 97). RESULTS: After external validation, the best model (including non-imaging and advanced staging variables) achieved an area under the curve of 0.60 (95%CI=0.48–0.72) to predict complete response and 0.65 (95%CI=0.53–0.76) to predict a good response. Quantitative variables did not improve model performance. Basic staging variables consistently achieved lower performance compared to advanced staging variables. CONCLUSIONS: Overall model performance was moderate. Best results were obtained using advanced staging variables, highlighting the importance of good-quality staging according to current guidelines. Quantitative imaging features had no added value (in this heterogeneous dataset). CLINICAL RELEVANCE STATEMENT: Predicting tumour response at baseline could aid in tailoring neoadjuvant therapies for rectal cancer. This study shows that image-based prediction models are promising, though are negatively affected by variations in staging quality and MRI acquisition, urging the need for harmonization. KEY POINTS: This multicenter study combining clinical information and features derived from MRI rendered disappointing performance to predict response to neoadjuvant treatment in rectal cancer. Best results were obtained with the combination of clinical baseline information and state-of-the-art image-based staging variables, highlighting the importance of good quality staging according to current guidelines and staging templates. No added value was found for quantitative imaging features in this multicenter retrospective study. This is likely related to acquisition variations, which is a major problem for feature reproducibility and thus model generalizability. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-023-09920-6. Springer Berlin Heidelberg 2023-07-14 2023 /pmc/articles/PMC10667134/ /pubmed/37452176 http://dx.doi.org/10.1007/s00330-023-09920-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Imaging Informatics and Artificial Intelligence
Schurink, Niels W.
van Kranen, Simon R.
van Griethuysen, Joost J. M.
Roberti, Sander
Snaebjornsson, Petur
Bakers, Frans C. H.
de Bie, Shira H.
Bosma, Gerlof P. T.
Cappendijk, Vincent C.
Geenen, Remy W. F.
Neijenhuis, Peter A.
Peterson, Gerald M.
Veeken, Cornelis J.
Vliegen, Roy F. A.
Peters, Femke P.
Bogveradze, Nino
el Khababi, Najim
Lahaye, Max J.
Maas, Monique
Beets, Geerard L.
Beets-Tan, Regina G. H.
Lambregts, Doenja M. J.
Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
title Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
title_full Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
title_fullStr Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
title_full_unstemmed Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
title_short Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
title_sort development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
topic Imaging Informatics and Artificial Intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667134/
https://www.ncbi.nlm.nih.gov/pubmed/37452176
http://dx.doi.org/10.1007/s00330-023-09920-6
work_keys_str_mv AT schurinknielsw developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT vankranensimonr developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT vangriethuysenjoostjm developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT robertisander developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT snaebjornssonpetur developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT bakersfransch developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT debieshirah developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT bosmagerlofpt developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT cappendijkvincentc developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT geenenremywf developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT neijenhuispetera developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT petersongeraldm developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT veekencornelisj developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT vliegenroyfa developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT petersfemkep developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT bogveradzenino developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT elkhababinajim developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT lahayemaxj developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT maasmonique developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT beetsgeerardl developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT beetstanreginagh developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer
AT lambregtsdoenjamj developmentandmulticentervalidationofamultiparametricimagingmodeltopredicttreatmentresponseinrectalcancer