Cargando…

Fermentation technology as a driver of human brain expansion

Brain tissue is metabolically expensive. Consequently, the evolution of humans’ large brains must have occurred via concomitant shifts in energy expenditure and intake. Proposed mechanisms include dietary shifts such as cooking. Importantly, though, any new food source must have been exploitable by...

Descripción completa

Detalles Bibliográficos
Autores principales: Bryant, Katherine L., Hansen, Christi, Hecht, Erin E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667226/
https://www.ncbi.nlm.nih.gov/pubmed/37996482
http://dx.doi.org/10.1038/s42003-023-05517-3
Descripción
Sumario:Brain tissue is metabolically expensive. Consequently, the evolution of humans’ large brains must have occurred via concomitant shifts in energy expenditure and intake. Proposed mechanisms include dietary shifts such as cooking. Importantly, though, any new food source must have been exploitable by hominids with brains a third the size of modern humans’. Here, we propose the initial metabolic trigger of hominid brain expansion was the consumption of externally fermented foods. We define “external fermentation” as occurring outside the body, as opposed to the internal fermentation in the gut. External fermentation could increase the bioavailability of macro- and micronutrients while reducing digestive energy expenditure and is supported by the relative reduction of the human colon. We discuss the explanatory power of our hypothesis and survey external fermentation practices across human cultures to demonstrate its viability across a range of environments and food sources. We close with suggestions for empirical tests.