Cargando…
Selection of metallic liquid in sub-6 GHz antenna design for 6G networks
The rapid evolution of wireless communication systems toward 6G demands efficient antennas with the features of adaptability and versatility. Liquid antennas have gained significant research interest due to their unique features in realizing small, flexible, transparent, and reconfigurable antennas...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667243/ https://www.ncbi.nlm.nih.gov/pubmed/37996542 http://dx.doi.org/10.1038/s41598-023-47870-7 |
Sumario: | The rapid evolution of wireless communication systems toward 6G demands efficient antennas with the features of adaptability and versatility. Liquid antennas have gained significant research interest due to their unique features in realizing small, flexible, transparent, and reconfigurable antennas for promising applications in future wireless systems. In this paper, in order to find a suitable metallic liquid for effective antennas, we design and compare the performance of metallic liquid antennas using Mercury, gallium indium alloy (EGaIn), and Graphene metallic liquid in the sub-6 GHz frequency. The antenna is realized by the metallic liquid in a poly methyl methacrylate microfluidic channel over a liquid crystal polymer substrate at 5.6 GHz frequency. The performance of these metallic liquid antennas is analyzed by their electromagnetic and radiation performance. The Graphene-based metallic liquid antenna shows better electromagnetic performance in comparison to Mercury and EGaIn metallic liquid antennas. |
---|