Cargando…
Comparison between vision transformers and convolutional neural networks to predict non-small lung cancer recurrence
Non-Small cell lung cancer (NSCLC) is one of the most dangerous cancers, with 85% of all new lung cancer diagnoses and a 30–55% of recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients during diagnosis could be essential to drive targeted therapies preventi...
Autores principales: | Fanizzi, Annarita, Fadda, Federico, Comes, Maria Colomba, Bove, Samantha, Catino, Annamaria, Di Benedetto, Erika, Milella, Angelo, Montrone, Michele, Nardone, Annalisa, Soranno, Clara, Rizzo, Alessandro, Guven, Deniz Can, Galetta, Domenico, Massafra, Raffaella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667245/ https://www.ncbi.nlm.nih.gov/pubmed/37996651 http://dx.doi.org/10.1038/s41598-023-48004-9 |
Ejemplares similares
-
A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region
por: Bove, Samantha, et al.
Publicado: (2023) -
Informative Power Evaluation of Clinical Parameters to Predict Initial Therapeutic Response in Patients with Advanced Pleural Mesothelioma: A Machine Learning Approach
por: Massafra, Raffaella, et al.
Publicado: (2022) -
Immunotherapy in Elderly Patients Affected by Non-Small Cell Lung Cancer: A Narrative Review
por: Montrone, Michele, et al.
Publicado: (2023) -
A Machine Learning Approach for Predicting Capsular Contracture after Postmastectomy Radiotherapy in Breast Cancer Patients
por: Bavaro, Domenica Antonia, et al.
Publicado: (2023) -
A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients
por: Comes, Maria Colomba, et al.
Publicado: (2022)