Cargando…

Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects

Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyc...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Thomas C., Kroukamp, Heinrich, Xu, Xin, Wightman, Elizabeth L.I., Llorente, Briardo, Borneman, Anthony R., Carpenter, Alexander C., Van Wyk, Niel, Meier, Felix, Collier, Thomas R.V., Espinosa, Monica I., Daniel, Elizabeth L., Walker, Roy S.K., Cai, Yizhi, Nevalainen, Helena K.M., Curach, Natalie C., Deveson, Ira W., Mercer, Timothy R., Johnson, Daniel L., Mitchell, Leslie A., Bader, Joel S., Stracquadanio, Giovanni, Boeke, Jef D., Goold, Hugh D., Pretorius, Isak S., Paulsen, Ian T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667330/
https://www.ncbi.nlm.nih.gov/pubmed/38020977
http://dx.doi.org/10.1016/j.xgen.2023.100379
_version_ 1785139224169676800
author Williams, Thomas C.
Kroukamp, Heinrich
Xu, Xin
Wightman, Elizabeth L.I.
Llorente, Briardo
Borneman, Anthony R.
Carpenter, Alexander C.
Van Wyk, Niel
Meier, Felix
Collier, Thomas R.V.
Espinosa, Monica I.
Daniel, Elizabeth L.
Walker, Roy S.K.
Cai, Yizhi
Nevalainen, Helena K.M.
Curach, Natalie C.
Deveson, Ira W.
Mercer, Timothy R.
Johnson, Daniel L.
Mitchell, Leslie A.
Bader, Joel S.
Stracquadanio, Giovanni
Boeke, Jef D.
Goold, Hugh D.
Pretorius, Isak S.
Paulsen, Ian T.
author_facet Williams, Thomas C.
Kroukamp, Heinrich
Xu, Xin
Wightman, Elizabeth L.I.
Llorente, Briardo
Borneman, Anthony R.
Carpenter, Alexander C.
Van Wyk, Niel
Meier, Felix
Collier, Thomas R.V.
Espinosa, Monica I.
Daniel, Elizabeth L.
Walker, Roy S.K.
Cai, Yizhi
Nevalainen, Helena K.M.
Curach, Natalie C.
Deveson, Ira W.
Mercer, Timothy R.
Johnson, Daniel L.
Mitchell, Leslie A.
Bader, Joel S.
Stracquadanio, Giovanni
Boeke, Jef D.
Goold, Hugh D.
Pretorius, Isak S.
Paulsen, Ian T.
author_sort Williams, Thomas C.
collection PubMed
description Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.
format Online
Article
Text
id pubmed-10667330
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-106673302023-11-09 Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects Williams, Thomas C. Kroukamp, Heinrich Xu, Xin Wightman, Elizabeth L.I. Llorente, Briardo Borneman, Anthony R. Carpenter, Alexander C. Van Wyk, Niel Meier, Felix Collier, Thomas R.V. Espinosa, Monica I. Daniel, Elizabeth L. Walker, Roy S.K. Cai, Yizhi Nevalainen, Helena K.M. Curach, Natalie C. Deveson, Ira W. Mercer, Timothy R. Johnson, Daniel L. Mitchell, Leslie A. Bader, Joel S. Stracquadanio, Giovanni Boeke, Jef D. Goold, Hugh D. Pretorius, Isak S. Paulsen, Ian T. Cell Genom Article Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications. Elsevier 2023-11-09 /pmc/articles/PMC10667330/ /pubmed/38020977 http://dx.doi.org/10.1016/j.xgen.2023.100379 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Williams, Thomas C.
Kroukamp, Heinrich
Xu, Xin
Wightman, Elizabeth L.I.
Llorente, Briardo
Borneman, Anthony R.
Carpenter, Alexander C.
Van Wyk, Niel
Meier, Felix
Collier, Thomas R.V.
Espinosa, Monica I.
Daniel, Elizabeth L.
Walker, Roy S.K.
Cai, Yizhi
Nevalainen, Helena K.M.
Curach, Natalie C.
Deveson, Ira W.
Mercer, Timothy R.
Johnson, Daniel L.
Mitchell, Leslie A.
Bader, Joel S.
Stracquadanio, Giovanni
Boeke, Jef D.
Goold, Hugh D.
Pretorius, Isak S.
Paulsen, Ian T.
Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects
title Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects
title_full Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects
title_fullStr Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects
title_full_unstemmed Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects
title_short Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects
title_sort parallel laboratory evolution and rational debugging reveal genomic plasticity to s. cerevisiae synthetic chromosome xiv defects
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667330/
https://www.ncbi.nlm.nih.gov/pubmed/38020977
http://dx.doi.org/10.1016/j.xgen.2023.100379
work_keys_str_mv AT williamsthomasc parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT kroukampheinrich parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT xuxin parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT wightmanelizabethli parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT llorentebriardo parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT bornemananthonyr parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT carpenteralexanderc parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT vanwykniel parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT meierfelix parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT collierthomasrv parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT espinosamonicai parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT danielelizabethl parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT walkerroysk parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT caiyizhi parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT nevalainenhelenakm parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT curachnataliec parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT devesoniraw parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT mercertimothyr parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT johnsondaniell parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT mitchelllesliea parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT baderjoels parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT stracquadaniogiovanni parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT boekejefd parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT gooldhughd parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT pretoriusisaks parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects
AT paulseniant parallellaboratoryevolutionandrationaldebuggingrevealgenomicplasticitytoscerevisiaesyntheticchromosomexivdefects