Cargando…
Cybersecurity considerations for radiology departments involved with artificial intelligence
ABSTRACT: Radiology artificial intelligence (AI) projects involve the integration of integrating numerous medical devices, wireless technologies, data warehouses, and social networks. While cybersecurity threats are not new to healthcare, their prevalence has increased with the rise of AI research f...
Autores principales: | Kelly, Brendan S., Quinn, Conor, Belton, Niamh, Lawlor, Aonghus, Killeen, Ronan P., Burrell, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667413/ https://www.ncbi.nlm.nih.gov/pubmed/37418025 http://dx.doi.org/10.1007/s00330-023-09860-1 |
Ejemplares similares
-
How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method
por: Kelly, Brendan S, et al.
Publicado: (2023) -
Radiology artificial intelligence, a systematic evaluation of methods (RAISE): a systematic review protocol
por: Kelly, Brendan, et al.
Publicado: (2020) -
Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
por: Kelly, Brendan S., et al.
Publicado: (2022) -
Correction to: Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE)
por: Kelly, Brendan S., et al.
Publicado: (2022) -
Using deep learning–derived image features in radiologic time series to make personalised predictions: proof of concept in colonic transit data
por: Kelly, Brendan S., et al.
Publicado: (2023)