Cargando…
STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks
Spiking Neural Networks (SNNs) have shown great promise in processing spatio-temporal information compared to Artificial Neural Networks (ANNs). However, there remains a performance gap between SNNs and ANNs, which impedes the practical application of SNNs. With intrinsic event-triggered property an...
Autores principales: | Wu, Xiyan, Song, Yong, Zhou, Ya, Jiang, Yurong, Bai, Yashuo, Li, Xinyi, Yang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667472/ https://www.ncbi.nlm.nih.gov/pubmed/38027490 http://dx.doi.org/10.3389/fnins.2023.1261543 |
Ejemplares similares
-
STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022) -
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022) -
Spiking Neural Network (SNN) With Memristor Synapses Having Non-linear Weight Update
por: Kim, Taeyoon, et al.
Publicado: (2021) -
RescueSNN: enabling reliable executions on spiking neural network accelerators under permanent faults
por: Putra, Rachmad Vidya Wicaksana, et al.
Publicado: (2023) -
Enhancing spiking neural networks with hybrid top-down attention
por: Liu, Faqiang, et al.
Publicado: (2022)