Cargando…
Rise of synthetic yeast: Charting courses to new applications
Microbes have long provided us with important capabilities, and the genome engineering of microbes has greatly empowered research and applications in biotechnology. This is especially true with the emergence of synthetic biology and recent advances in genome engineering to control microbial behavior...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667549/ https://www.ncbi.nlm.nih.gov/pubmed/38020966 http://dx.doi.org/10.1016/j.xgen.2023.100438 |
Sumario: | Microbes have long provided us with important capabilities, and the genome engineering of microbes has greatly empowered research and applications in biotechnology. This is especially true with the emergence of synthetic biology and recent advances in genome engineering to control microbial behavior. A fully synthetic, rationally designed genome promises opportunities for unprecedented control of cellular function. As a eukaryotic workhorse for research and industrial use, yeast is an organism at the forefront of synthetic biology; the tools and engineered cellular platform being delivered by the Sc2.0 consortium are enabling a new era of bespoke biology. This issue highlights recent advances delivered by this consortium, but hurdles remain to maximize the impact of engineered eukaryotic cells more broadly. |
---|