Cargando…
Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health
The northern root-knot nematode (Meloidogyne hapla) causes extensive damage to agricultural crops globally. In addition, M. hapla populations with no known genetic or morphological differences exhibit parasitic variability (PV) or reproductive potential based on soil type. However, why M. hapla popu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667709/ https://www.ncbi.nlm.nih.gov/pubmed/38029134 http://dx.doi.org/10.3389/fmicb.2023.1267008 |
_version_ | 1785139308151177216 |
---|---|
author | Lartey, Isaac Benucci, Gian M. N. Marsh, Terence L. Bonito, Gregory M. Melakeberhan, Haddish |
author_facet | Lartey, Isaac Benucci, Gian M. N. Marsh, Terence L. Bonito, Gregory M. Melakeberhan, Haddish |
author_sort | Lartey, Isaac |
collection | PubMed |
description | The northern root-knot nematode (Meloidogyne hapla) causes extensive damage to agricultural crops globally. In addition, M. hapla populations with no known genetic or morphological differences exhibit parasitic variability (PV) or reproductive potential based on soil type. However, why M. hapla populations from mineral soil with degraded soil health conditions have a higher PV than populations from muck soil is unknown. To improve our understanding of soil bio-physicochemical conditions in the environment where M. hapla populations exhibited PV, this study characterized the soil microbial community and core- and indicator-species structure associated with M. hapla occurrence and soil health conditions in 15 Michigan mineral and muck vegetable production fields. Bacterial and fungal communities in soils from where nematodes were isolated were characterized with high throughput sequencing of 16S and internal transcribed spacer (ITS) rDNA. Our results showed that M. hapla-infested, as well as disturbed and degraded muck fields, had lower bacterial diversity (observed richness and Shannon) compared to corresponding mineral soil fields or non-infested mineral fields. Bacterial and fungal community abundance varied by soil group, soil health conditions, and/or M. hapla occurrence. A core microbial community was found to consist of 39 bacterial and 44 fungal sub-operational taxonomic units (OTUs) across all fields. In addition, 25 bacteria were resolved as indicator OTUs associated with M. hapla presence or absence, and 1,065 bacteria as indicator OTUs associated with soil health conditions. Out of the 1,065 bacterial OTUs, 73.9% indicated stable soil health, 8.4% disturbed, and 0.4% degraded condition; no indicators were common to the three categories. Collectively, these results provide a foundation for an in-depth understanding of the environment where M. hapla exists and conditions associated with parasitic variability. |
format | Online Article Text |
id | pubmed-10667709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106677092023-11-10 Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health Lartey, Isaac Benucci, Gian M. N. Marsh, Terence L. Bonito, Gregory M. Melakeberhan, Haddish Front Microbiol Microbiology The northern root-knot nematode (Meloidogyne hapla) causes extensive damage to agricultural crops globally. In addition, M. hapla populations with no known genetic or morphological differences exhibit parasitic variability (PV) or reproductive potential based on soil type. However, why M. hapla populations from mineral soil with degraded soil health conditions have a higher PV than populations from muck soil is unknown. To improve our understanding of soil bio-physicochemical conditions in the environment where M. hapla populations exhibited PV, this study characterized the soil microbial community and core- and indicator-species structure associated with M. hapla occurrence and soil health conditions in 15 Michigan mineral and muck vegetable production fields. Bacterial and fungal communities in soils from where nematodes were isolated were characterized with high throughput sequencing of 16S and internal transcribed spacer (ITS) rDNA. Our results showed that M. hapla-infested, as well as disturbed and degraded muck fields, had lower bacterial diversity (observed richness and Shannon) compared to corresponding mineral soil fields or non-infested mineral fields. Bacterial and fungal community abundance varied by soil group, soil health conditions, and/or M. hapla occurrence. A core microbial community was found to consist of 39 bacterial and 44 fungal sub-operational taxonomic units (OTUs) across all fields. In addition, 25 bacteria were resolved as indicator OTUs associated with M. hapla presence or absence, and 1,065 bacteria as indicator OTUs associated with soil health conditions. Out of the 1,065 bacterial OTUs, 73.9% indicated stable soil health, 8.4% disturbed, and 0.4% degraded condition; no indicators were common to the three categories. Collectively, these results provide a foundation for an in-depth understanding of the environment where M. hapla exists and conditions associated with parasitic variability. Frontiers Media S.A. 2023-11-10 /pmc/articles/PMC10667709/ /pubmed/38029134 http://dx.doi.org/10.3389/fmicb.2023.1267008 Text en Copyright © 2023 Lartey, Benucci, Marsh, Bonito and Melakeberhan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Lartey, Isaac Benucci, Gian M. N. Marsh, Terence L. Bonito, Gregory M. Melakeberhan, Haddish Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health |
title | Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health |
title_full | Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health |
title_fullStr | Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health |
title_full_unstemmed | Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health |
title_short | Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health |
title_sort | characterizing microbial communities associated with northern root-knot nematode (meloidogyne hapla) occurrence and soil health |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667709/ https://www.ncbi.nlm.nih.gov/pubmed/38029134 http://dx.doi.org/10.3389/fmicb.2023.1267008 |
work_keys_str_mv | AT larteyisaac characterizingmicrobialcommunitiesassociatedwithnorthernrootknotnematodemeloidogynehaplaoccurrenceandsoilhealth AT benuccigianmn characterizingmicrobialcommunitiesassociatedwithnorthernrootknotnematodemeloidogynehaplaoccurrenceandsoilhealth AT marshterencel characterizingmicrobialcommunitiesassociatedwithnorthernrootknotnematodemeloidogynehaplaoccurrenceandsoilhealth AT bonitogregorym characterizingmicrobialcommunitiesassociatedwithnorthernrootknotnematodemeloidogynehaplaoccurrenceandsoilhealth AT melakeberhanhaddish characterizingmicrobialcommunitiesassociatedwithnorthernrootknotnematodemeloidogynehaplaoccurrenceandsoilhealth |