Cargando…

Simple One‐Step Molten Salt Method for Synthesizing Highly Efficient MXene‐Supported Pt Nanoalloy Electrocatalysts

MXene‐supported noble metal alloy catalysts exhibit remarkable electrocatalytic activity in various applications. However, there is no facile one‐step method for synthesizing these catalysts, because the synthesis of MXenes requires a strongly oxidizing environment and the preparation of platinum na...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ya, Li, Lili, Shen, Miao, Tang, Rui, Zhou, Jing, Han, Ling, Zhang, Xiuqing, Zhang, Linjuan, Kim, Guntae, Wang, Jian‐Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667796/
https://www.ncbi.nlm.nih.gov/pubmed/37863664
http://dx.doi.org/10.1002/advs.202303693
_version_ 1785139327981846528
author Wang, Ya
Li, Lili
Shen, Miao
Tang, Rui
Zhou, Jing
Han, Ling
Zhang, Xiuqing
Zhang, Linjuan
Kim, Guntae
Wang, Jian‐Qiang
author_facet Wang, Ya
Li, Lili
Shen, Miao
Tang, Rui
Zhou, Jing
Han, Ling
Zhang, Xiuqing
Zhang, Linjuan
Kim, Guntae
Wang, Jian‐Qiang
author_sort Wang, Ya
collection PubMed
description MXene‐supported noble metal alloy catalysts exhibit remarkable electrocatalytic activity in various applications. However, there is no facile one‐step method for synthesizing these catalysts, because the synthesis of MXenes requires a strongly oxidizing environment and the preparation of platinum nanoalloys requires a strongly reducing environment and high temperatures. Hence, achieving coupling in one step is extremely challenging. In this paper, a straightforward one‐step molten salt method for preparing MXene‐supported platinum nanoalloy catalysts is proposed. The molten salt acts as the reaction medium to dissolve the transition metals and platinum ions at high temperatures. Transition metal ions oxidize the A‐site element from its MAX precursor at high temperatures, and the resulting transition metals further reduce platinum ions to form alloys. By coupling Al oxidation and platinum ion reduction using a molten salt solvent, this method directly converts Ti(3)AlC(2) to a Pt‐M@Ti(3)C(2)T (x) catalyst (where M denotes the transition metal). It further offers the possibility of extending the Pt‐M phase to binary, ternary, or quaternary platinum‐containing nanoalloys and converting the Al‐containing MAX phase to Ti(2)AlC and Ti(3)AlCN. Due to the strong interfacial interaction, the as‐prepared Pt‐Co@Ti(3)C(2)T (x) is superior to commercial Pt/C (20 wt.%) in the hydrogen evolution reaction.
format Online
Article
Text
id pubmed-10667796
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106677962023-10-20 Simple One‐Step Molten Salt Method for Synthesizing Highly Efficient MXene‐Supported Pt Nanoalloy Electrocatalysts Wang, Ya Li, Lili Shen, Miao Tang, Rui Zhou, Jing Han, Ling Zhang, Xiuqing Zhang, Linjuan Kim, Guntae Wang, Jian‐Qiang Adv Sci (Weinh) Research Articles MXene‐supported noble metal alloy catalysts exhibit remarkable electrocatalytic activity in various applications. However, there is no facile one‐step method for synthesizing these catalysts, because the synthesis of MXenes requires a strongly oxidizing environment and the preparation of platinum nanoalloys requires a strongly reducing environment and high temperatures. Hence, achieving coupling in one step is extremely challenging. In this paper, a straightforward one‐step molten salt method for preparing MXene‐supported platinum nanoalloy catalysts is proposed. The molten salt acts as the reaction medium to dissolve the transition metals and platinum ions at high temperatures. Transition metal ions oxidize the A‐site element from its MAX precursor at high temperatures, and the resulting transition metals further reduce platinum ions to form alloys. By coupling Al oxidation and platinum ion reduction using a molten salt solvent, this method directly converts Ti(3)AlC(2) to a Pt‐M@Ti(3)C(2)T (x) catalyst (where M denotes the transition metal). It further offers the possibility of extending the Pt‐M phase to binary, ternary, or quaternary platinum‐containing nanoalloys and converting the Al‐containing MAX phase to Ti(2)AlC and Ti(3)AlCN. Due to the strong interfacial interaction, the as‐prepared Pt‐Co@Ti(3)C(2)T (x) is superior to commercial Pt/C (20 wt.%) in the hydrogen evolution reaction. John Wiley and Sons Inc. 2023-10-20 /pmc/articles/PMC10667796/ /pubmed/37863664 http://dx.doi.org/10.1002/advs.202303693 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wang, Ya
Li, Lili
Shen, Miao
Tang, Rui
Zhou, Jing
Han, Ling
Zhang, Xiuqing
Zhang, Linjuan
Kim, Guntae
Wang, Jian‐Qiang
Simple One‐Step Molten Salt Method for Synthesizing Highly Efficient MXene‐Supported Pt Nanoalloy Electrocatalysts
title Simple One‐Step Molten Salt Method for Synthesizing Highly Efficient MXene‐Supported Pt Nanoalloy Electrocatalysts
title_full Simple One‐Step Molten Salt Method for Synthesizing Highly Efficient MXene‐Supported Pt Nanoalloy Electrocatalysts
title_fullStr Simple One‐Step Molten Salt Method for Synthesizing Highly Efficient MXene‐Supported Pt Nanoalloy Electrocatalysts
title_full_unstemmed Simple One‐Step Molten Salt Method for Synthesizing Highly Efficient MXene‐Supported Pt Nanoalloy Electrocatalysts
title_short Simple One‐Step Molten Salt Method for Synthesizing Highly Efficient MXene‐Supported Pt Nanoalloy Electrocatalysts
title_sort simple one‐step molten salt method for synthesizing highly efficient mxene‐supported pt nanoalloy electrocatalysts
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667796/
https://www.ncbi.nlm.nih.gov/pubmed/37863664
http://dx.doi.org/10.1002/advs.202303693
work_keys_str_mv AT wangya simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT lilili simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT shenmiao simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT tangrui simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT zhoujing simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT hanling simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT zhangxiuqing simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT zhanglinjuan simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT kimguntae simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts
AT wangjianqiang simpleonestepmoltensaltmethodforsynthesizinghighlyefficientmxenesupportedptnanoalloyelectrocatalysts