Cargando…

Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors

The effects of near surface or surface mechanisms on electrochemical performance (lower specific capacitance density) hinders the development of 3D printed micro supercapacitors (MSCs). The reasonable internal structural characteristics of printed electrodes and the appropriate intercalation materia...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Huijie, Sun, Yangyang, Yang, Hui, Tang, Yijian, Lu, Yiyao, Zhou, Zhen, Cao, Shuai, Zhang, Songtao, Chen, Songqing, Zhang, Yizhou, Pang, Huan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667828/
https://www.ncbi.nlm.nih.gov/pubmed/37752758
http://dx.doi.org/10.1002/advs.202303636
_version_ 1785139335243235328
author Zhou, Huijie
Sun, Yangyang
Yang, Hui
Tang, Yijian
Lu, Yiyao
Zhou, Zhen
Cao, Shuai
Zhang, Songtao
Chen, Songqing
Zhang, Yizhou
Pang, Huan
author_facet Zhou, Huijie
Sun, Yangyang
Yang, Hui
Tang, Yijian
Lu, Yiyao
Zhou, Zhen
Cao, Shuai
Zhang, Songtao
Chen, Songqing
Zhang, Yizhou
Pang, Huan
author_sort Zhou, Huijie
collection PubMed
description The effects of near surface or surface mechanisms on electrochemical performance (lower specific capacitance density) hinders the development of 3D printed micro supercapacitors (MSCs). The reasonable internal structural characteristics of printed electrodes and the appropriate intercalation material can effectively compensate for the effects of surface or near‐surface mechanisms. In this study, a layered structure is constructed inside an electrode using an ink with liquid‐crystal characteristics, and the pore structure and oxidation active sites of the layered electrode are optimized by controlling the amount of Co(3)O(4)‐quantum dots (Co(3)O(4) QDs). The Co(3)O(4) QDs are distributed in the pores of the electrode surface, and the insertion of Co(3)O(4) QDs can effectively compensate for the limitations of surface or near‐surface mechanisms, thus effectively improving the pseudocapacitive characteristics of the 3D‐printed MSCs. The 3D printed MSC exhibits a high area capacitance (306.13 mF cm(−2)) and energy density (34.44 µWh cm(−2) at a power density of 0.108 mW cm(−2)). Therefore, selecting the appropriate materials to construct printable electrode structures and effectively adjusting material ratios for efficient 3D printing are expected to provide feasible solutions for the construction of various high‐energy storage systems such as MSCs.
format Online
Article
Text
id pubmed-10667828
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106678282023-09-26 Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors Zhou, Huijie Sun, Yangyang Yang, Hui Tang, Yijian Lu, Yiyao Zhou, Zhen Cao, Shuai Zhang, Songtao Chen, Songqing Zhang, Yizhou Pang, Huan Adv Sci (Weinh) Research Articles The effects of near surface or surface mechanisms on electrochemical performance (lower specific capacitance density) hinders the development of 3D printed micro supercapacitors (MSCs). The reasonable internal structural characteristics of printed electrodes and the appropriate intercalation material can effectively compensate for the effects of surface or near‐surface mechanisms. In this study, a layered structure is constructed inside an electrode using an ink with liquid‐crystal characteristics, and the pore structure and oxidation active sites of the layered electrode are optimized by controlling the amount of Co(3)O(4)‐quantum dots (Co(3)O(4) QDs). The Co(3)O(4) QDs are distributed in the pores of the electrode surface, and the insertion of Co(3)O(4) QDs can effectively compensate for the limitations of surface or near‐surface mechanisms, thus effectively improving the pseudocapacitive characteristics of the 3D‐printed MSCs. The 3D printed MSC exhibits a high area capacitance (306.13 mF cm(−2)) and energy density (34.44 µWh cm(−2) at a power density of 0.108 mW cm(−2)). Therefore, selecting the appropriate materials to construct printable electrode structures and effectively adjusting material ratios for efficient 3D printing are expected to provide feasible solutions for the construction of various high‐energy storage systems such as MSCs. John Wiley and Sons Inc. 2023-09-26 /pmc/articles/PMC10667828/ /pubmed/37752758 http://dx.doi.org/10.1002/advs.202303636 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Zhou, Huijie
Sun, Yangyang
Yang, Hui
Tang, Yijian
Lu, Yiyao
Zhou, Zhen
Cao, Shuai
Zhang, Songtao
Chen, Songqing
Zhang, Yizhou
Pang, Huan
Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors
title Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors
title_full Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors
title_fullStr Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors
title_full_unstemmed Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors
title_short Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors
title_sort co(3)o(4) quantum dots intercalation liquid‐crystal ordered‐layered‐structure optimizing the performance of 3d‐printing micro‐supercapacitors
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667828/
https://www.ncbi.nlm.nih.gov/pubmed/37752758
http://dx.doi.org/10.1002/advs.202303636
work_keys_str_mv AT zhouhuijie co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT sunyangyang co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT yanghui co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT tangyijian co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT luyiyao co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT zhouzhen co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT caoshuai co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT zhangsongtao co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT chensongqing co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT zhangyizhou co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors
AT panghuan co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors