Cargando…
Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors
The effects of near surface or surface mechanisms on electrochemical performance (lower specific capacitance density) hinders the development of 3D printed micro supercapacitors (MSCs). The reasonable internal structural characteristics of printed electrodes and the appropriate intercalation materia...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667828/ https://www.ncbi.nlm.nih.gov/pubmed/37752758 http://dx.doi.org/10.1002/advs.202303636 |
_version_ | 1785139335243235328 |
---|---|
author | Zhou, Huijie Sun, Yangyang Yang, Hui Tang, Yijian Lu, Yiyao Zhou, Zhen Cao, Shuai Zhang, Songtao Chen, Songqing Zhang, Yizhou Pang, Huan |
author_facet | Zhou, Huijie Sun, Yangyang Yang, Hui Tang, Yijian Lu, Yiyao Zhou, Zhen Cao, Shuai Zhang, Songtao Chen, Songqing Zhang, Yizhou Pang, Huan |
author_sort | Zhou, Huijie |
collection | PubMed |
description | The effects of near surface or surface mechanisms on electrochemical performance (lower specific capacitance density) hinders the development of 3D printed micro supercapacitors (MSCs). The reasonable internal structural characteristics of printed electrodes and the appropriate intercalation material can effectively compensate for the effects of surface or near‐surface mechanisms. In this study, a layered structure is constructed inside an electrode using an ink with liquid‐crystal characteristics, and the pore structure and oxidation active sites of the layered electrode are optimized by controlling the amount of Co(3)O(4)‐quantum dots (Co(3)O(4) QDs). The Co(3)O(4) QDs are distributed in the pores of the electrode surface, and the insertion of Co(3)O(4) QDs can effectively compensate for the limitations of surface or near‐surface mechanisms, thus effectively improving the pseudocapacitive characteristics of the 3D‐printed MSCs. The 3D printed MSC exhibits a high area capacitance (306.13 mF cm(−2)) and energy density (34.44 µWh cm(−2) at a power density of 0.108 mW cm(−2)). Therefore, selecting the appropriate materials to construct printable electrode structures and effectively adjusting material ratios for efficient 3D printing are expected to provide feasible solutions for the construction of various high‐energy storage systems such as MSCs. |
format | Online Article Text |
id | pubmed-10667828 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106678282023-09-26 Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors Zhou, Huijie Sun, Yangyang Yang, Hui Tang, Yijian Lu, Yiyao Zhou, Zhen Cao, Shuai Zhang, Songtao Chen, Songqing Zhang, Yizhou Pang, Huan Adv Sci (Weinh) Research Articles The effects of near surface or surface mechanisms on electrochemical performance (lower specific capacitance density) hinders the development of 3D printed micro supercapacitors (MSCs). The reasonable internal structural characteristics of printed electrodes and the appropriate intercalation material can effectively compensate for the effects of surface or near‐surface mechanisms. In this study, a layered structure is constructed inside an electrode using an ink with liquid‐crystal characteristics, and the pore structure and oxidation active sites of the layered electrode are optimized by controlling the amount of Co(3)O(4)‐quantum dots (Co(3)O(4) QDs). The Co(3)O(4) QDs are distributed in the pores of the electrode surface, and the insertion of Co(3)O(4) QDs can effectively compensate for the limitations of surface or near‐surface mechanisms, thus effectively improving the pseudocapacitive characteristics of the 3D‐printed MSCs. The 3D printed MSC exhibits a high area capacitance (306.13 mF cm(−2)) and energy density (34.44 µWh cm(−2) at a power density of 0.108 mW cm(−2)). Therefore, selecting the appropriate materials to construct printable electrode structures and effectively adjusting material ratios for efficient 3D printing are expected to provide feasible solutions for the construction of various high‐energy storage systems such as MSCs. John Wiley and Sons Inc. 2023-09-26 /pmc/articles/PMC10667828/ /pubmed/37752758 http://dx.doi.org/10.1002/advs.202303636 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zhou, Huijie Sun, Yangyang Yang, Hui Tang, Yijian Lu, Yiyao Zhou, Zhen Cao, Shuai Zhang, Songtao Chen, Songqing Zhang, Yizhou Pang, Huan Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors |
title | Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors |
title_full | Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors |
title_fullStr | Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors |
title_full_unstemmed | Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors |
title_short | Co(3)O(4) Quantum Dots Intercalation Liquid‐Crystal Ordered‐Layered‐Structure Optimizing the Performance of 3D‐Printing Micro‐Supercapacitors |
title_sort | co(3)o(4) quantum dots intercalation liquid‐crystal ordered‐layered‐structure optimizing the performance of 3d‐printing micro‐supercapacitors |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667828/ https://www.ncbi.nlm.nih.gov/pubmed/37752758 http://dx.doi.org/10.1002/advs.202303636 |
work_keys_str_mv | AT zhouhuijie co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT sunyangyang co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT yanghui co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT tangyijian co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT luyiyao co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT zhouzhen co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT caoshuai co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT zhangsongtao co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT chensongqing co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT zhangyizhou co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors AT panghuan co3o4quantumdotsintercalationliquidcrystalorderedlayeredstructureoptimizingtheperformanceof3dprintingmicrosupercapacitors |