Cargando…
Understanding the need for digital twins’ data in patient advocacy and forecasting oncology
Digital twins are made of a real-world component where data is measured and a virtual component where those measurements are used to parameterize computational models. There is growing interest in applying digital twins-based approaches to optimize personalized treatment plans and improve health out...
Autores principales: | Chang, Hung-Ching, Gitau, Antony M., Kothapalli, Siri, Welch, Danny R., Sardiu, Mihaela E., McCoy, Matthew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667907/ https://www.ncbi.nlm.nih.gov/pubmed/38028666 http://dx.doi.org/10.3389/frai.2023.1260361 |
Ejemplares similares
-
CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin
por: Zotov, Evgeny, et al.
Publicado: (2021) -
LSTM-based sentiment analysis for stock price forecast
por: Ko, Ching-Ru, et al.
Publicado: (2021) -
Developing a Cancer Digital Twin: Supervised Metastases Detection From Consecutive Structured Radiology Reports
por: Batch, Karen E., et al.
Publicado: (2022) -
Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas
por: Chaudhuri, Anirban, et al.
Publicado: (2023) -
Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning
por: Kurz, Daria, et al.
Publicado: (2021)