Cargando…
A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning
BACKGROUND: Transcriptomic profile differences between patients with bipolar disorder and healthy controls can be identified using machine learning and can provide information about the potential role of the cerebellum in the pathogenesis of bipolar disorder.With this aim, user-friendly, fully autom...
Autores principales: | Thomaidis, Georgios V., Papadimitriou, Konstantinos, Michos, Sotirios, Chartampilas, Evangelos, Tsamardinos, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668096/ https://www.ncbi.nlm.nih.gov/pubmed/38025660 http://dx.doi.org/10.1016/j.ibneur.2023.06.008 |
Ejemplares similares
-
Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2020) -
Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning
por: Panagopoulou, Maria, et al.
Publicado: (2021) -
Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Liquid Biopsy in Type 2 Diabetes Mellitus Management: Building Specific Biosignatures via Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Cerebellar-limbic neurocircuit is the novel biosignature of physio-cognitive decline syndrome
por: Liu, Li-Kuo, et al.
Publicado: (2020)