Cargando…

Modulation of SLFN11 induces changes in DNA Damage response in breast cancer

BACKGROUND: Lack of Schlafen family member 11 (SLFN11) expression has been recently identified as a dominant genomic determinant of response to DNA damaging agents in numerous cancer types. Thus, several strategies aimed at increasing SLFN11 are explored to restore chemosensitivity of refractory can...

Descripción completa

Detalles Bibliográficos
Autores principales: Raynaud, Christophe Michel, Ahmed, Eiman I., Jabeen, Ayesha, Sanchez, Apryl, Sherif, Shimaa, Carneiro-Lobo, Tatiana C., Awad, Amany, Awartani, Dina, Naik, Adviti, Thomas, Remy, Decock, Julie, Zoppoli, Gabriele, Bedongnetti, Davide, Hendrickx, Wouter R. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668346/
https://www.ncbi.nlm.nih.gov/pubmed/38001424
http://dx.doi.org/10.1186/s12935-023-03144-w
Descripción
Sumario:BACKGROUND: Lack of Schlafen family member 11 (SLFN11) expression has been recently identified as a dominant genomic determinant of response to DNA damaging agents in numerous cancer types. Thus, several strategies aimed at increasing SLFN11 are explored to restore chemosensitivity of refractory cancers. In this study, we examined various approaches to elevate SLFN11 expression in breast cancer cellular models and confirmed a corresponding increase in chemosensitivity with using the most successful efficient one. As oncogenic transcriptomic downregulation is often driven by methylation of the promotor region, we explore the demethylation effect of 5-aza-2′-deoxycytidine (decitabine), on the SLFN11 gene. Since SLFN11 has been reported as an interferon inducible gene, and interferon is secreted during an active anti-tumor immune response, we investigated the in vitro effect of IFN-γ on SLFN11 expression in breast cancer cell lines. As a secondary approach to pick up cross talk between immune cells and SLFN11 expression we used indirect co-culture of breast cancer cells with activated PBMCs and evaluated if this can drive SLFN11 upregulation. Finally, as a definitive and specific way to modulate SLFN11 expression we implemented SLFN11 dCas9 (dead CRISPR associated protein 9) systems to specifically increase or decrease SLFN11 expression. RESULTS: After confirming the previously reported correlation between methylation of SLFN11 promoter and its expression across multiple cell lines, we showed in-vitro that decitabine and IFN-γ could increase moderately the expression of SLFN11 in both BT-549 and T47D cell lines. The use of a CRISPR-dCas9 UNISAM and KRAB system could increase or decrease SLFN11 expression significantly (up to fivefold), stably and specifically in BT-549 and T47D cancer cell lines. We then used the modified cell lines to quantify the alteration in chemo sensitivity of those cells to treatment with DNA Damaging Agents (DDAs) such as Cisplatin and Epirubicin or DNA Damage Response (DDRs) drugs like Olaparib. RNAseq was used to elucidate the mechanisms of action affected by the alteration in SLFN11 expression. In cell lines with robust SLFN11 promoter methylation such as MDA-MB-231, no SLFN11 expression could be induced by any approach. CONCLUSION: To our knowledge this is the first report of the stable non-lethal increase of SLFN11 expression in a cancer cell line. Our results show that induction of SLFN11 expression can enhance DDA and DDR sensitivity in breast cancer cells and dCas9 systems may represent a novel approach to increase SLFN11 and achieve higher sensitivity to chemotherapeutic agents, improving outcome or decreasing required drug concentrations. SLFN11-targeting therapies might be explored pre-clinically to develop personalized approaches. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-023-03144-w.