Cargando…

Post-Mortem Extracorporeal Membrane Oxygenation Perfusion Rat Model: A Feasibility Study

SIMPLE SUMMARY: Animal experiments are essential for the development and optimization of innovative biomedical soft- or hardware. These technologies, not least in the field of intensive care, contribute to an enhanced quality of care and chances of survival. One prominent example that gained public...

Descripción completa

Detalles Bibliográficos
Autores principales: Deininger, Matthias Manfred, Benner, Carl-Friedrich, Strudthoff, Lasse Johannes, Leonhardt, Steffen, Bruells, Christian Simon, Marx, Gernot, Bleilevens, Christian, Breuer, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668677/
https://www.ncbi.nlm.nih.gov/pubmed/38003149
http://dx.doi.org/10.3390/ani13223532
Descripción
Sumario:SIMPLE SUMMARY: Animal experiments are essential for the development and optimization of innovative biomedical soft- or hardware. These technologies, not least in the field of intensive care, contribute to an enhanced quality of care and chances of survival. One prominent example that gained public attention due to the COVID-19 pandemic is extracorporeal membrane oxygenation, in short ECMO, as it supports the heart and lungs during severe disease. Even though ECMO is already in use, the components, e.g., the oxygenator that acts as an artificial lung, need further improvement. The basic functions of new devices, e.g., the oxygenation performance, do not necessarily require living animals for the evaluation; therefore, the present study aimed to develop a post-mortem rat cadaver perfusion model exclusively using surplus animals, e.g., from in-house breeding, to reduce the number of animals used for these models, according to the animal welfare principle (the 3Rs: Replace, Reduce, Refine). It was shown that the established rat cadaver model allowed organ perfusion for up to eight hours, making it a promising model for testing new biomedical technology and, thus, a welfare-friendly alternative for existing living rat perfusion models. ABSTRACT: The development of biomedical soft- or hardware frequently includes testing in animals. However, large efforts have been made to reduce the number of animal experiments, according to the 3Rs principle. Simultaneously, a significant number of surplus animals are euthanized without scientific necessity. The primary aim of this study was to establish a post-mortem rat perfusion model using extracorporeal membrane oxygenation (ECMO) in surplus rat cadavers and generate first post vivo results concerning the oxygenation performance of a recently developed ECMO membrane oxygenator. Four rats were euthanized and connected post-mortem to a venous–arterial ECMO circulation for up to eight hours. Angiographic perfusion proofs, blood gas analyses and blood oxygenation calculations were performed. The mean preparation time for the ECMO system was 791 ± 29 s and sufficient organ perfusion could be maintained for 463 ± 26 min, proofed via angiographic imaging and a mean femoral arterial pressure of 43 ± 17 mmHg. A stable partial oxygen pressure, a 73% rise in arterial oxygen concentration and an exponentially increasing oxygen extraction ratio up to 4.75 times were shown. Considering the 3Rs, the established post-mortal ECMO perfusion rat model using surplus animals represents a promising alternative to models using live animals. Given the preserved organ perfusion, its use could be conceivable for various biomedical device testing.