Cargando…
Effective Invasiveness Recognition of Imbalanced Data by Semi-Automated Segmentations of Lung Nodules
Over the past few decades, recognition of early lung cancers was researched for effective treatments. In early lung cancers, the invasiveness is an important factor for expected survival rates. Hence, how to effectively identify the invasiveness by computed tomography (CT) images became a hot topic...
Autores principales: | Tung, Yu-Cheng, Su, Ja-Hwung, Liao, Yi-Wen, Lee, Yeong-Chyi, Chen, Bo-An, Huang, Hong-Ming, Jhang, Jia-Jhan, Hsieh, Hsin-Yi, Tong, Yu-Shun, Cheng, Yu-Fan, Lai, Chien-Hao, Chang, Wan-Ching |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668977/ https://www.ncbi.nlm.nih.gov/pubmed/38001939 http://dx.doi.org/10.3390/biomedicines11112938 |
Ejemplares similares
-
Instance segmentation using semi-supervised learning for fire recognition
por: Sun, Guangmin, et al.
Publicado: (2022) -
Design of lung nodules segmentation and recognition algorithm based on deep learning
por: Yu, Hui, et al.
Publicado: (2021) -
Emotion Recognition from Single-Trial EEG Based on Kernel Fisher's Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine
por: Liu, Yi-Hung, et al.
Publicado: (2014) -
An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images
por: Sun, Fei, et al.
Publicado: (2020) -
Lung nodule segmentation via semi-residual multi-resolution neural networks
por: Wang, Chenyang, et al.
Publicado: (2023)