Cargando…
Optimizing Image Classification: Automated Deep Learning Architecture Crafting with Network and Learning Hyperparameter Tuning
This study introduces ETLBOCBL-CNN, an automated approach for optimizing convolutional neural network (CNN) architectures to address classification tasks of varying complexities. ETLBOCBL-CNN employs an effective encoding scheme to optimize network and learning hyperparameters, enabling the discover...
Autores principales: | Ang, Koon Meng, Lim, Wei Hong, Tiang, Sew Sun, Sharma, Abhishek, Eid, Marwa M., Tawfeek, Sayed M., Khafaga, Doaa Sami, Alharbi, Amal H., Abdelhamid, Abdelaziz A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669013/ https://www.ncbi.nlm.nih.gov/pubmed/37999166 http://dx.doi.org/10.3390/biomimetics8070525 |
Ejemplares similares
-
Optimizing HCV Disease Prediction in Egypt: The hyOPTGB Framework
por: Elshewey, Ahmed M., et al.
Publicado: (2023) -
Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning
por: Isabona, Joseph, et al.
Publicado: (2022) -
Accelerating Hyperparameter Tuning in Machine Learning for Alzheimer’s Disease With High Performance Computing
por: Zhang, Fan, et al.
Publicado: (2021) -
Investigation of Applying Machine Learning and Hyperparameter Tuned Deep Learning Approaches for Arrhythmia Detection in ECG Images
por: Shanmugavadivel, Kogilavani, et al.
Publicado: (2022) -
Hyperparameter Tuning with High Performance Computing Machine Learning for Imbalanced Alzheimer’s Disease Data
por: Zhang, Fan, et al.
Publicado: (2022)