Cargando…
Automatic Segmentation and Assessment of Valvular Regurgitations with Color Doppler Echocardiography Images: A VABC-UNet-Based Framework
This study investigated the automatic segmentation and classification of mitral regurgitation (MR) and tricuspid regurgitation (TR) using a deep learning-based method, aiming to improve the efficiency and accuracy of diagnosis of valvular regurgitations. A VABC-UNet model was proposed consisting of...
Autores principales: | Huang, Jun, Huang, Aiyue, Xu, Ruqin, Wu, Musheng, Wang, Peng, Wang, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669048/ https://www.ncbi.nlm.nih.gov/pubmed/38002443 http://dx.doi.org/10.3390/bioengineering10111319 |
Ejemplares similares
-
Automatic Assessment of Mitral Regurgitation Severity Using the Mask R-CNN Algorithm with Color Doppler Echocardiography Images
por: Zhang, Qinglu, et al.
Publicado: (2021) -
Diastolic Mitral Regurgitation in Intact Mitral Valve Detected by Color Doppler Echocardiography in a Patient with Acute Aortic Regurgitation.
por: Kodamag, Makoto, et al.
Publicado: (1992) -
Self-supervised learning assisted diagnosis for mitral regurgitation severity classification based on color Doppler echocardiography
por: Yang, Feifei, et al.
Publicado: (2022) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023) -
Artificial Intelligence for Automatic Measurement of Sagittal Vertical Axis Using ResUNet Framework
por: Weng, Chi-Hung, et al.
Publicado: (2019)