Cargando…
Gesture Classification in Electromyography Signals for Real-Time Prosthetic Hand Control Using a Convolutional Neural Network-Enhanced Channel Attention Model
Accurate and real-time gesture recognition is required for the autonomous operation of prosthetic hand devices. This study employs a convolutional neural network-enhanced channel attention (CNN-ECA) model to provide a unique approach for surface electromyography (sEMG) gesture recognition. The intro...
Autores principales: | Yu, Guangjie, Deng, Ziting, Bao, Zhenchen, Zhang, Yue, He, Bingwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669079/ https://www.ncbi.nlm.nih.gov/pubmed/38002448 http://dx.doi.org/10.3390/bioengineering10111324 |
Ejemplares similares
-
Basic Hand Gestures Classification Based on Surface Electromyography
por: Palkowski, Aleksander, et al.
Publicado: (2016) -
Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands
por: Atzori, Manfredo, et al.
Publicado: (2016) -
Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures
por: Ozdemir, Mehmet Akif, et al.
Publicado: (2022) -
Data Augmentation of Surface Electromyography for Hand Gesture Recognition
por: Tsinganos, Panagiotis, et al.
Publicado: (2020) -
Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network
por: Sahoo, Jaya Prakash, et al.
Publicado: (2022)