Cargando…

Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation

SIMPLE SUMMARY: Caveolin-1 (Cav1) is a protein that exists in many different forms and locations in cells and tissues throughout the body. We can understand more about cell growth, death, and cellular processes by further understanding the structure and function of Cav1. The increasing knowledge of...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalton, Cody M., Schlegel, Camille, Hunter, Catherine J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669080/
https://www.ncbi.nlm.nih.gov/pubmed/37998001
http://dx.doi.org/10.3390/biology12111402
_version_ 1785139611441299456
author Dalton, Cody M.
Schlegel, Camille
Hunter, Catherine J.
author_facet Dalton, Cody M.
Schlegel, Camille
Hunter, Catherine J.
author_sort Dalton, Cody M.
collection PubMed
description SIMPLE SUMMARY: Caveolin-1 (Cav1) is a protein that exists in many different forms and locations in cells and tissues throughout the body. We can understand more about cell growth, death, and cellular processes by further understanding the structure and function of Cav1. The increasing knowledge of Cav1 and its roles in different organs and disease processes helps delineate its potential use in the development of treatments and therapies. ABSTRACT: Caveolin-1 (Cav1) is a vital protein for many cellular processes and is involved in both the positive and negative regulation of these processes. Cav1 exists in multiple cellular compartments depending on its role. Of particular interest is its contribution to the formation of plasma membrane invaginations called caveolae and its involvement in cytoskeletal interactions, endocytosis, and cholesterol trafficking. Cav1 participates in stem cell differentiation as well as proliferation and cell death pathways, which is implicated in tumor growth and metastasis. Additionally, Cav1 has tissue-specific functions that are adapted to the requirements of the cells within those tissues. Its role has been described in adipose, lung, pancreatic, and vascular tissue and in epithelial barrier maintenance. In both the intestinal and the blood brain barriers, Cav1 has significant interactions with junctional complexes that manage barrier integrity. Tight junctions have a close relationship with Cav1 and this relationship affects both their level of expression and their location within the cell. The ubiquitous nature of Cav1 both within the cell and within specific tissues is what makes the protein important for ongoing research as it can assist in further understanding pathophysiologic processes and can potentially be a target for therapies.
format Online
Article
Text
id pubmed-10669080
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-106690802023-11-05 Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation Dalton, Cody M. Schlegel, Camille Hunter, Catherine J. Biology (Basel) Review SIMPLE SUMMARY: Caveolin-1 (Cav1) is a protein that exists in many different forms and locations in cells and tissues throughout the body. We can understand more about cell growth, death, and cellular processes by further understanding the structure and function of Cav1. The increasing knowledge of Cav1 and its roles in different organs and disease processes helps delineate its potential use in the development of treatments and therapies. ABSTRACT: Caveolin-1 (Cav1) is a vital protein for many cellular processes and is involved in both the positive and negative regulation of these processes. Cav1 exists in multiple cellular compartments depending on its role. Of particular interest is its contribution to the formation of plasma membrane invaginations called caveolae and its involvement in cytoskeletal interactions, endocytosis, and cholesterol trafficking. Cav1 participates in stem cell differentiation as well as proliferation and cell death pathways, which is implicated in tumor growth and metastasis. Additionally, Cav1 has tissue-specific functions that are adapted to the requirements of the cells within those tissues. Its role has been described in adipose, lung, pancreatic, and vascular tissue and in epithelial barrier maintenance. In both the intestinal and the blood brain barriers, Cav1 has significant interactions with junctional complexes that manage barrier integrity. Tight junctions have a close relationship with Cav1 and this relationship affects both their level of expression and their location within the cell. The ubiquitous nature of Cav1 both within the cell and within specific tissues is what makes the protein important for ongoing research as it can assist in further understanding pathophysiologic processes and can potentially be a target for therapies. MDPI 2023-11-05 /pmc/articles/PMC10669080/ /pubmed/37998001 http://dx.doi.org/10.3390/biology12111402 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Dalton, Cody M.
Schlegel, Camille
Hunter, Catherine J.
Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation
title Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation
title_full Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation
title_fullStr Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation
title_full_unstemmed Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation
title_short Caveolin-1: A Review of Intracellular Functions, Tissue-Specific Roles, and Epithelial Tight Junction Regulation
title_sort caveolin-1: a review of intracellular functions, tissue-specific roles, and epithelial tight junction regulation
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669080/
https://www.ncbi.nlm.nih.gov/pubmed/37998001
http://dx.doi.org/10.3390/biology12111402
work_keys_str_mv AT daltoncodym caveolin1areviewofintracellularfunctionstissuespecificrolesandepithelialtightjunctionregulation
AT schlegelcamille caveolin1areviewofintracellularfunctionstissuespecificrolesandepithelialtightjunctionregulation
AT huntercatherinej caveolin1areviewofintracellularfunctionstissuespecificrolesandepithelialtightjunctionregulation