Cargando…
The Role of the Insulin/Glucose Ratio in the Regulation of Pathogen Biofilm Formation
SIMPLE SUMMARY: Insulin and glucose affect the biofilm formation of both Gram-positive and Gram-negative bacteria over the physiologic range in a manner that is dependent on the ratio of insulin to glucose. These findings provide insight into the mechanism underpinning empirical sepsis management in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669081/ https://www.ncbi.nlm.nih.gov/pubmed/37998031 http://dx.doi.org/10.3390/biology12111432 |
Sumario: | SIMPLE SUMMARY: Insulin and glucose affect the biofilm formation of both Gram-positive and Gram-negative bacteria over the physiologic range in a manner that is dependent on the ratio of insulin to glucose. These findings provide insight into the mechanism underpinning empirical sepsis management in trauma care. ABSTRACT: During the management of patients in acute trauma the resulting transient hyperglycemia is treated by administration of insulin. Since the effect of insulin, a quorum sensing compound, together with glucose affects biofilm formation in a concentration-specific manner, we hypothesize that the insulin/glucose ratio over the physiologic range modulates biofilm formation potentially influencing the establishment of infection through biofilm formation. Methods: A variety of Gram-positive and Gram-negative bacteria were grown in peptone (1%) yeast nitrogen base broth overnight in 96-well plates with various concentrations of glucose and insulin. Biofilm formation was determined by the crystal violet staining procedure. Expression of insulin binding was determined by fluorescent microscopy (FITC-insulin). Controls were buffer alone, insulin alone, and glucose alone. Results: Overall, maximal biofilm levels were measured at 220 mg/dL of glucose, regardless of insulin concentration (10, 100, 200 µU/mL) of the organism tested. In general, insulin with glucose over the range of 160–180 mg/dL exhibited a pattern of biofilm suppression. However, either above or below this range, the presence of insulin in combination with glucose significantly modulated (increase or decrease) biofilm formation in a microbe-specific pattern. This modulation appears for some organisms to be reflective of the glucose-regulated intrinsic expression of bacterial insulin receptor expression. Conclusion: Insulin at physiologic levels (normal and hyperinsulinemic) in combination with glucose can affect biofilm formation in a concentration-specific and microbe-specific manner. These findings may provide insight into the importance of co-regulation of the insulin/glucose ratio in patient management. |
---|