Cargando…

Preparation, Physicochemical Characterization, Antimicrobial Effects, Biocompatibility and Cytotoxicity of Co-Loaded Meropenem and Vancomycin in Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSNPs) have been reported as an effective system to co-deliver a variety of different agents to enhance efficiency and improve biocompatibility. This study was aimed at the preparation, physicochemical characterization, antimicrobial effects, biocompatibility, and cy...

Descripción completa

Detalles Bibliográficos
Autores principales: Yekani, Mina, Azargun, Robab, Sharifi, Simin, Sadri Nahand, Javid, Hasani, Alka, Ghanbari, Hadi, Sadat Seyyedi, Zahra, Memar, Mohammad Yousef, Maleki Dizaj, Solmaz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669092/
https://www.ncbi.nlm.nih.gov/pubmed/38002075
http://dx.doi.org/10.3390/biomedicines11113075
Descripción
Sumario:Mesoporous silica nanoparticles (MSNPs) have been reported as an effective system to co-deliver a variety of different agents to enhance efficiency and improve biocompatibility. This study was aimed at the preparation, physicochemical characterization, antimicrobial effects, biocompatibility, and cytotoxicity of vancomycin and meropenem co-loaded in the mesoporous silica nanoparticles (Van/Mrp-MSNPs). The prepared nanoparticles were explored for their physicochemical features, antibacterial and antibiofilm effects, biocompatibility, and cytotoxicity. The minimum inhibitory concentrations (MICs) of the Van/Mrp-MSNPs (0.12–1 µg/mL) against Staphylococcus aureus isolates were observed to be lower than those of the same concentrations of vancomycin and meropenem. The minimum biofilm inhibitory concentration (MBIC) range of the Van/Mrp-MSNPs was 8–64 μg/mL, which was lower than the meropenem and vancomycin MBICs. The bacterial adherence was not significantly decreased upon exposure to levels lower than the MICs of the MSNPs and Van/Mrp-MSNPs. The viability of NIH/3T3 cells treated with serial concentrations of the MSNPs and Van/Mrp-MSNPs were 73–88% and 74–90%, respectively. The Van/Mrp-MSNPs displayed considerable inhibitory effects against MRSA, favorable biocompatibility, and low cytotoxicity. The Van/Mrp-MSNPs could be a potential system for the treatment of infections.