Cargando…

Terminalia petiolaris A.Cunn ex Benth. Extracts Have Antibacterial Activity and Potentiate Conventional Antibiotics against β-Lactam-Drug-Resistant Bacteria

Terminalia petiolaris A. Cunn. Ex Benth. (genus: Terminalia, family: Combretaceae) is native to Australia. Terminalia spp. have traditionally been used to treat various ailments, including bacterial infections. Solvents of varying polarity were used to extract compounds from leaves of this species,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zai, Muhammad Jawad, Cheesman, Matthew James, Cock, Ian Edwin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669112/
https://www.ncbi.nlm.nih.gov/pubmed/37998845
http://dx.doi.org/10.3390/antibiotics12111643
Descripción
Sumario:Terminalia petiolaris A. Cunn. Ex Benth. (genus: Terminalia, family: Combretaceae) is native to Australia. Terminalia spp. have traditionally been used to treat various ailments, including bacterial infections. Solvents of varying polarity were used to extract compounds from leaves of this species, and the extracts were tested against a panel of bacteria, including antibiotic-resistant strains. The methanolic and water extracts showed substantial inhibitory activity against several bacteria, including antibiotic-resistant strains in both disc diffusion and liquid dilution assays. Combining these extracts with selected conventional antibiotics enhanced the inhibition of bacterial growth for some combinations, while others showed no significant interaction. In total, two synergistic, twenty-five additive, twenty-three non-interactive and one antagonistic interaction were observed. The methanolic and ethyl acetate plant extracts were found to be non-toxic in Artemia franciscana nauplii toxicity assays. A liquid chromatography–mass spectrometry metabolomics analysis identified several flavonoid compounds, including miquelianin, trifolin and orientin, which might contribute to the observed activities. The potential modes of these active extracts are further discussed in this study.