Cargando…
Predictive Modeling and Integrated Risk Assessment of Postoperative Mortality and Pneumonia in Traumatic Brain Injury Patients through Clustering and Machine Learning: Retrospective Study
This study harnessed machine learning to forecast postoperative mortality (POM) and postoperative pneumonia (PPN) among surgical traumatic brain injury (TBI) patients. Our analysis centered on the following key variables: Glasgow Coma Scale (GCS), midline brain shift (MSB), and time from injury to e...
Autores principales: | Kim, Jong-Ho, Chung, Kyung-Min, Lee, Jae-Jun, Choi, Hyuk-Jai, Kwon, Young-Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669264/ https://www.ncbi.nlm.nih.gov/pubmed/38001880 http://dx.doi.org/10.3390/biomedicines11112880 |
Ejemplares similares
-
Cluster analysis integrating age and body temperature for mortality in patients with sepsis: a multicenter retrospective study
por: Baek, Moon Seong, et al.
Publicado: (2022) -
Harnessing Machine Learning for Prediction of Postoperative Pulmonary Complications: Retrospective Cohort Design
por: Kim, Jong-Ho, et al.
Publicado: (2023) -
Explainable machine learning using perioperative serial laboratory results to predict postoperative mortality in patients with peritonitis-induced sepsis
por: Lim, Seung Hee, et al.
Publicado: (2023) -
Prediction of Postoperative Pulmonary Edema Risk Using Machine Learning
por: Kim, Jong Ho, et al.
Publicado: (2023) -
Comparison of the Effect of Sugammadex and Pyridostigmine on Postoperative Catheter-Related Bladder Discomfort: A Retrospective Matched Cohort Analysis
por: Kwon, Young-Suk, et al.
Publicado: (2022)