Cargando…

Some Mechanical Constraints to the Biomimicry with Peripheral Nerves

Novel high technology devices built to restore impaired peripheral nerves should be biomimetic in both their structure and in the biomolecular environment created around regenerating axons. Nevertheless, the structural biomimicry with peripheral nerves should follow some basic constraints due to the...

Descripción completa

Detalles Bibliográficos
Autor principal: Sergi, Pier Nicola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669299/
https://www.ncbi.nlm.nih.gov/pubmed/37999185
http://dx.doi.org/10.3390/biomimetics8070544
Descripción
Sumario:Novel high technology devices built to restore impaired peripheral nerves should be biomimetic in both their structure and in the biomolecular environment created around regenerating axons. Nevertheless, the structural biomimicry with peripheral nerves should follow some basic constraints due to their complex mechanical behaviour. However, it is not currently clear how these constraints could be defined. As a consequence, in this work, an explicit, deterministic, and physical-based framework was proposed to describe some mechanical constraints needed to mimic the peripheral nerve behaviour in extension. More specifically, a novel framework was proposed to investigate whether the similarity of the stress/strain curve was enough to replicate the natural nerve behaviour. An original series of computational optimizing procedures was then introduced to further investigate the role of the tangent modulus and of the rate of change of the tangent modulus with strain in better defining the structural biomimicry with peripheral nerves.