Cargando…

Speech Perception Improvement Algorithm Based on a Dual-Path Long Short-Term Memory Network

Current deep learning-based speech enhancement methods focus on enhancing the time–frequency representation of the signal. However, conventional methods can lead to speech damage due to resolution mismatch problems that emphasize only specific information in the time or frequency domain. To address...

Descripción completa

Detalles Bibliográficos
Autores principales: Koh, Hyeong Il, Na, Sungdae, Kim, Myoung Nam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669314/
https://www.ncbi.nlm.nih.gov/pubmed/38002449
http://dx.doi.org/10.3390/bioengineering10111325
Descripción
Sumario:Current deep learning-based speech enhancement methods focus on enhancing the time–frequency representation of the signal. However, conventional methods can lead to speech damage due to resolution mismatch problems that emphasize only specific information in the time or frequency domain. To address these challenges, this paper introduces a speech enhancement model designed with a dual-path structure that identifies key speech characteristics in both the time and time–frequency domains. Specifically, the time path aims to model semantic features hidden in the waveform, while the time–frequency path attempts to compensate for the spectral details via a spectral extension block. These two paths enhance temporal and spectral features via mask functions modeled as LSTM, respectively, offering a comprehensive approach to speech enhancement. Experimental results show that the proposed dual-path LSTM network consistently outperforms conventional single-domain speech enhancement methods in terms of speech quality and intelligibility.