Cargando…
Comparison of the Surface Roughness of CAD/CAM Metal-Free Materials Used for Complete-Arch Implant-Supported Prostheses: An In Vitro Study
The roughness of the intra-oral surfaces significantly influences the initial adhesion and the retention of microorganisms. The aim of this study was to analyze the surface texture of four different CAD-CAM materials (two high-performance polymers and two fifth-generation zirconia) used for complete...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669478/ https://www.ncbi.nlm.nih.gov/pubmed/38002036 http://dx.doi.org/10.3390/biomedicines11113036 |
Sumario: | The roughness of the intra-oral surfaces significantly influences the initial adhesion and the retention of microorganisms. The aim of this study was to analyze the surface texture of four different CAD-CAM materials (two high-performance polymers and two fifth-generation zirconia) used for complete-arch implant-supported prostheses (CAISPs), and to investigate the effect of artificial aging on their roughness. A total of 40 milled prostheses were divided into 4 groups (n = 10) according to their framework material, bio.HPP (B), bio.HPP Plus (BP), zirconia Luxor Z Frame (ZF), and Luxor Z True Nature (ZM). The areal surface roughness “Sa” and the maximum height “Sz” of each specimen was measured on the same site after laboratory fabrication (lab as-received specimen) and after thermocycling (5–55 °C, 10,000 cycles) by using a noncontact optical profilometer. Data were analyzed using SPSS version 28.0.1. One-way ANOVA with multiple comparison tests (p = 0.05) and repeated measures ANOVA were used. After thermocycling, all materials maintained “Sa” values at the laboratory as-received specimen level (p = 0.24). “Sz” increased only for the zirconia groups (p = 0.01). B-BP exhibited results equal/slightly better than ZM-ZF. This study provides more realistic surface texture values of new metal-free materials used in real anatomical CAISPs after the manufacturing and aging processes and establishes a detailed and reproducible measurement workflow. |
---|