Cargando…
A Systematic Review of Deep-Learning Methods for Intracranial Aneurysm Detection in CT Angiography
Background: Subarachnoid hemorrhage resulting from cerebral aneurysm rupture is a significant cause of morbidity and mortality. Early identification of aneurysms on Computed Tomography Angiography (CTA), a frequently used modality for this purpose, is crucial, and artificial intelligence (AI)-based...
Autores principales: | Bizjak, Žiga, Špiclin, Žiga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669551/ https://www.ncbi.nlm.nih.gov/pubmed/38001922 http://dx.doi.org/10.3390/biomedicines11112921 |
Ejemplares similares
-
Deep Shape Features for Predicting Future Intracranial Aneurysm Growth
por: Bizjak, Žiga, et al.
Publicado: (2021) -
Detection and Localization of Hyperfunctioning Parathyroid Glands on [(18)F]fluorocholine PET/ CT Using Deep Learning – Model Performance and Comparison to Human Experts
por: Jarabek, Leon, et al.
Publicado: (2022) -
Extensive T1-weighted MRI Preprocessing Improves Generalizability of Deep Brain Age Prediction Models
por: Dular, Lara, et al.
Publicado: (2023) -
Accuracy of CT angiography for detecting ruptured intracranial aneurysms
por: Mkhize, Nomasonto N., et al.
Publicado: (2023) -
Prevalence of Intracranial Aneurysm in Patients with Aortopathy: A Systematic Review with Meta-Analyses
por: Yu, Xinyu, et al.
Publicado: (2020)