Cargando…
Enhancing the Super-Resolution of Medical Images: Introducing the Deep Residual Feature Distillation Channel Attention Network for Optimized Performance and Efficiency
In the advancement of medical image super-resolution (SR), the Deep Residual Feature Distillation Channel Attention Network (DRFDCAN) marks a significant step forward. This work presents DRFDCAN, a model that innovates traditional SR approaches by introducing a channel attention block that is tailor...
Autores principales: | Umirzakova, Sabina, Mardieva, Sevara, Muksimova, Shakhnoza, Ahmad, Shabir, Whangbo, Taegkeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669552/ https://www.ncbi.nlm.nih.gov/pubmed/38002456 http://dx.doi.org/10.3390/bioengineering10111332 |
Ejemplares similares
-
Novel Video Surveillance-Based Fire and Smoke Classification Using Attentional Feature Map in Capsule Networks
por: Shakhnoza, Muksimova, et al.
Publicado: (2021) -
Attention Network with Information Distillation for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods
por: Majidov, Ikhtiyor, et al.
Publicado: (2019) -
Endoscopic Image Classification Based on Explainable Deep Learning
por: Mukhtorov, Doniyorjon, et al.
Publicado: (2023) -
Edge‐based effective active appearance model for real‐time wrinkle detection
por: Sabina, Umirzakova, et al.
Publicado: (2020)