Cargando…
Artificial Intelligence Algorithms for Benign vs. Malignant Dermoscopic Skin Lesion Image Classification
In recent decades, the incidence of melanoma has grown rapidly. Hence, early diagnosis is crucial to improving clinical outcomes. Here, we propose and compare a classical image analysis-based machine learning method with a deep learning one to automatically classify benign vs. malignant dermoscopic...
Autores principales: | Brutti, Francesca, La Rosa, Federica, Lazzeri, Linda, Benvenuti, Chiara, Bagnoni, Giovanni, Massi, Daniela, Laurino, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669580/ https://www.ncbi.nlm.nih.gov/pubmed/38002446 http://dx.doi.org/10.3390/bioengineering10111322 |
Ejemplares similares
-
Impact of artificial intelligence‐based color constancy on dermoscopical assessment of skin lesions: A comparative study
por: Branciforti, Francesco, et al.
Publicado: (2023) -
Recognition of Cutaneous Melanoma on Digitized Histopathological Slides via Artificial Intelligence Algorithm
por: De Logu, Francesco, et al.
Publicado: (2020) -
Artificial Intelligence-Based Multiclass Classification of Benign or Malignant Mucosal Lesions of the Stomach
por: Ma, Bowei, et al.
Publicado: (2020) -
Boosting the performance of pretrained CNN architecture on dermoscopic pigmented skin lesion classification
por: Nugroho, Erwin Setyo, et al.
Publicado: (2023) -
Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm
por: Ünver, Halil Murat, et al.
Publicado: (2019)