Cargando…
A Comprehensive Review of Computer-Aided Models for Breast Cancer Diagnosis Using Histopathology Images
Breast cancer is the second most common cancer in women who are mainly middle-aged and older. The American Cancer Society reported that the average risk of developing breast cancer sometime in their life is about 13%, and this incident rate has increased by 0.5% per year in recent years. A biopsy is...
Autores principales: | Labrada, Alberto, Barkana, Buket D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669627/ https://www.ncbi.nlm.nih.gov/pubmed/38002413 http://dx.doi.org/10.3390/bioengineering10111289 |
Ejemplares similares
-
Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images
por: Kode, Hepseeba, et al.
Publicado: (2023) -
Imaging Modalities in Inflammatory Breast Cancer (IBC) Diagnosis: A Computer-Aided Diagnosis System Using Bilateral Mammography Images
por: Barkana, Buket D., et al.
Publicado: (2022) -
Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms
por: Daneshzand, Mohammad, et al.
Publicado: (2017) -
New breast cancer prognostic factors identified by computer-aided image analysis of HE stained histopathology images
por: Chen, Jia-Mei, et al.
Publicado: (2015) -
An interpretable decision-support model for breast cancer diagnosis using histopathology images
por: Krishna, Sruthi, et al.
Publicado: (2023)