Cargando…

Bio-Inspired Sutures: Simulating the Role of Suture Placement in the Mechanical Response of Interlocking Structures

The hardest anatomical components of many animals are connected at thin seams known as sutures, which allow for growth and compliance required for respiration and movement and serve as a defense mechanism by absorbing energy during impacts. We take a bio-inspired approach and parameterize suture geo...

Descripción completa

Detalles Bibliográficos
Autores principales: Gibbons, Melissa M., Chen, Diana A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669711/
https://www.ncbi.nlm.nih.gov/pubmed/37999156
http://dx.doi.org/10.3390/biomimetics8070515
Descripción
Sumario:The hardest anatomical components of many animals are connected at thin seams known as sutures, which allow for growth and compliance required for respiration and movement and serve as a defense mechanism by absorbing energy during impacts. We take a bio-inspired approach and parameterize suture geometries to utilize geometric connections, rather than new engineering materials, to absorb high-impact loads. This study builds upon our work that investigated the effects of the dovetail suture contact angle, tangent length, and tab radius on the stiffness and toughness of an archway structure using finite element analysis. We explore how increasing the archway segmentation affects the mechanical response of the overall structure and investigate the effects of displacement when induced between sutures. First, when keeping displacement along a suture but increasing the number of archway pieces from two to four, we observed that stiffness and toughness were reduced substantially, although the overall trends stayed the same. Second, when the displacement was induced along an archway edge rather than upon a suture (in a three-piece archway), we observed that archway stiffness and toughness were much less sensitive to the changes in the suture parameters, but unlike the archway indented along the suture line, they tended to lose stiffness and toughness as the tangent length increased. This study is a step forward in the development of bio-inspired impact-resistant helmets.