Cargando…
SpineHRformer: A Transformer-Based Deep Learning Model for Automatic Spine Deformity Assessment with Prospective Validation
The Cobb angle (CA) serves as the principal method for assessing spinal deformity, but manual measurements of the CA are time-consuming and susceptible to inter- and intra-observer variability. While learning-based methods, such as SpineHRNet+, have demonstrated potential in automating CA measuremen...
Autores principales: | Zhao, Moxin, Meng, Nan, Cheung, Jason Pui Yin, Yu, Chenxi, Lu, Pengyu, Zhang, Teng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669780/ https://www.ncbi.nlm.nih.gov/pubmed/38002457 http://dx.doi.org/10.3390/bioengineering10111333 |
Ejemplares similares
-
Radiograph-comparable image synthesis for spine alignment analysis using deep learning with prospective clinical validation
por: Meng, Nan, et al.
Publicado: (2023) -
Congenital deformities of the spine /
por: Winter, Robert B., 1932-
Publicado: (1983) -
Managing the Pediatric Spine: Growth Assessment
por: Cheung, Jason Pui Yin, et al.
Publicado: (2017) -
Iatrogenic biological fracture of the cervical spine during gradual halo traction for kyphotic deformity correction: case report
por: Lim, Austin Samuel Laifun, et al.
Publicado: (2020) -
Manual of Diseases and Deformities of the Spine
Publicado: (1895)