Cargando…
A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework
A multi-objective evolutionary algorithm based on decomposition (MOEA/D) serves as a robust framework for addressing multi-objective optimization problems (MOPs). However, it is widely recognized that the applicability of a fixed offspring-generating strategy in MOEA/D can be limited, despite its fo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669882/ https://www.ncbi.nlm.nih.gov/pubmed/37999162 http://dx.doi.org/10.3390/biomimetics8070521 |
_version_ | 1785139796180467712 |
---|---|
author | Han, Jiayi Watanabe, Shinya |
author_facet | Han, Jiayi Watanabe, Shinya |
author_sort | Han, Jiayi |
collection | PubMed |
description | A multi-objective evolutionary algorithm based on decomposition (MOEA/D) serves as a robust framework for addressing multi-objective optimization problems (MOPs). However, it is widely recognized that the applicability of a fixed offspring-generating strategy in MOEA/D can be limited, despite its foundation in the MOEA/D methodology. Consequently, hybrid algorithms have gained popularity in recent years. This study proposes a novel hyper-heuristic approach that integrates the estimation of distribution (ED) and crossover (CX) strategies into the MOEA/D framework based on the view of successful replacement rate (SSR) and attempts to explain the potential reasons for the advantages of hybrid algorithms. The proposed approach dynamically switches from the differential evolution (DE) operator to the covariance matrix adaptation evolution strategy (CMA-ES) operator. Simultaneously, certain subproblems in the neighbourhood denoted as [Formula: see text] employ the Improved Differential Evolution (IDE) operator to generate new individuals for balancing the high evaluation costs associated with CMA-ES. Numerical experiments unequivocally demonstrate that the suggested approach offers distinct advantages when applied to a three-objective test suite. These experiments also validate a significant enhancement in the efficiency (SRR) of the DE operator within this context. The perspectives and experimental findings, with a focus on the Success Rate Ratio (SRR), have the potential to provide valuable insights and inspire further research in related domains. |
format | Online Article Text |
id | pubmed-10669882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106698822023-11-02 A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework Han, Jiayi Watanabe, Shinya Biomimetics (Basel) Article A multi-objective evolutionary algorithm based on decomposition (MOEA/D) serves as a robust framework for addressing multi-objective optimization problems (MOPs). However, it is widely recognized that the applicability of a fixed offspring-generating strategy in MOEA/D can be limited, despite its foundation in the MOEA/D methodology. Consequently, hybrid algorithms have gained popularity in recent years. This study proposes a novel hyper-heuristic approach that integrates the estimation of distribution (ED) and crossover (CX) strategies into the MOEA/D framework based on the view of successful replacement rate (SSR) and attempts to explain the potential reasons for the advantages of hybrid algorithms. The proposed approach dynamically switches from the differential evolution (DE) operator to the covariance matrix adaptation evolution strategy (CMA-ES) operator. Simultaneously, certain subproblems in the neighbourhood denoted as [Formula: see text] employ the Improved Differential Evolution (IDE) operator to generate new individuals for balancing the high evaluation costs associated with CMA-ES. Numerical experiments unequivocally demonstrate that the suggested approach offers distinct advantages when applied to a three-objective test suite. These experiments also validate a significant enhancement in the efficiency (SRR) of the DE operator within this context. The perspectives and experimental findings, with a focus on the Success Rate Ratio (SRR), have the potential to provide valuable insights and inspire further research in related domains. MDPI 2023-11-02 /pmc/articles/PMC10669882/ /pubmed/37999162 http://dx.doi.org/10.3390/biomimetics8070521 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Han, Jiayi Watanabe, Shinya A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework |
title | A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework |
title_full | A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework |
title_fullStr | A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework |
title_full_unstemmed | A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework |
title_short | A New Hyper-Heuristic Multi-Objective Optimisation Approach Based on MOEA/D Framework |
title_sort | new hyper-heuristic multi-objective optimisation approach based on moea/d framework |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669882/ https://www.ncbi.nlm.nih.gov/pubmed/37999162 http://dx.doi.org/10.3390/biomimetics8070521 |
work_keys_str_mv | AT hanjiayi anewhyperheuristicmultiobjectiveoptimisationapproachbasedonmoeadframework AT watanabeshinya anewhyperheuristicmultiobjectiveoptimisationapproachbasedonmoeadframework AT hanjiayi newhyperheuristicmultiobjectiveoptimisationapproachbasedonmoeadframework AT watanabeshinya newhyperheuristicmultiobjectiveoptimisationapproachbasedonmoeadframework |