Cargando…
Analyzing the Robustness of Complex Networks with Attack Success Rate
Analyzing the robustness of networks against random failures or malicious attacks is a critical research issue in network science, as it contributes to enhancing the robustness of beneficial networks and effectively dismantling harmful ones. Most studies commonly neglect the impact of the attack suc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669974/ https://www.ncbi.nlm.nih.gov/pubmed/37998200 http://dx.doi.org/10.3390/e25111508 |
_version_ | 1785139814755991552 |
---|---|
author | Yang, Fangqun Wang, Yisong |
author_facet | Yang, Fangqun Wang, Yisong |
author_sort | Yang, Fangqun |
collection | PubMed |
description | Analyzing the robustness of networks against random failures or malicious attacks is a critical research issue in network science, as it contributes to enhancing the robustness of beneficial networks and effectively dismantling harmful ones. Most studies commonly neglect the impact of the attack success rate (ASR) and assume that attacks on the network will always be successful. However, in real-world scenarios, attacks may not always succeed. This paper proposes a novel robustness measure called Robustness-ASR (RASR), which utilizes mathematical expectations to assess network robustness when considering the ASR of each node. To efficiently compute the RASR for large-scale networks, a parallel algorithm named PRQMC is presented, which leverages randomized quasi-Monte Carlo integration to approximate the RASR with a faster convergence rate. Additionally, a new attack strategy named HBnnsAGP is introduced to better assess the lower bound of network RASR. Finally, the experimental results on six representative real-world complex networks demonstrate the effectiveness of the proposed methods compared with the state-of-the-art baselines. |
format | Online Article Text |
id | pubmed-10669974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106699742023-10-31 Analyzing the Robustness of Complex Networks with Attack Success Rate Yang, Fangqun Wang, Yisong Entropy (Basel) Article Analyzing the robustness of networks against random failures or malicious attacks is a critical research issue in network science, as it contributes to enhancing the robustness of beneficial networks and effectively dismantling harmful ones. Most studies commonly neglect the impact of the attack success rate (ASR) and assume that attacks on the network will always be successful. However, in real-world scenarios, attacks may not always succeed. This paper proposes a novel robustness measure called Robustness-ASR (RASR), which utilizes mathematical expectations to assess network robustness when considering the ASR of each node. To efficiently compute the RASR for large-scale networks, a parallel algorithm named PRQMC is presented, which leverages randomized quasi-Monte Carlo integration to approximate the RASR with a faster convergence rate. Additionally, a new attack strategy named HBnnsAGP is introduced to better assess the lower bound of network RASR. Finally, the experimental results on six representative real-world complex networks demonstrate the effectiveness of the proposed methods compared with the state-of-the-art baselines. MDPI 2023-10-31 /pmc/articles/PMC10669974/ /pubmed/37998200 http://dx.doi.org/10.3390/e25111508 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Fangqun Wang, Yisong Analyzing the Robustness of Complex Networks with Attack Success Rate |
title | Analyzing the Robustness of Complex Networks with Attack Success Rate |
title_full | Analyzing the Robustness of Complex Networks with Attack Success Rate |
title_fullStr | Analyzing the Robustness of Complex Networks with Attack Success Rate |
title_full_unstemmed | Analyzing the Robustness of Complex Networks with Attack Success Rate |
title_short | Analyzing the Robustness of Complex Networks with Attack Success Rate |
title_sort | analyzing the robustness of complex networks with attack success rate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669974/ https://www.ncbi.nlm.nih.gov/pubmed/37998200 http://dx.doi.org/10.3390/e25111508 |
work_keys_str_mv | AT yangfangqun analyzingtherobustnessofcomplexnetworkswithattacksuccessrate AT wangyisong analyzingtherobustnessofcomplexnetworkswithattacksuccessrate |