Cargando…
Causal Factor Disentanglement for Few-Shot Domain Adaptation in Video Prediction
An important challenge in machine learning is performing with accuracy when few training samples are available from the target distribution. If a large number of training samples from a related distribution are available, transfer learning can be used to improve the performance. This paper investiga...
Autores principales: | Cornille, Nathan, Laenen, Katrien, Sun, Jingyuan, Moens, Marie-Francine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670028/ https://www.ncbi.nlm.nih.gov/pubmed/37998247 http://dx.doi.org/10.3390/e25111554 |
Ejemplares similares
-
Critical Analysis of Deconfounded Pretraining to Improve Visio-Linguistic Models
por: Cornille, Nathan, et al.
Publicado: (2022) -
Low-Data Drug Design with Few-Shot Generative Domain Adaptation
por: Liu, Ke, et al.
Publicado: (2023) -
Multiobject Tracking of Wildlife in Videos Using Few-Shot Learning
por: Feng, Jiangfan, et al.
Publicado: (2022) -
Few-Shot Learning for Plant-Disease Recognition in the Frequency Domain
por: Lin, Hong, et al.
Publicado: (2022) -
Epilepsy seizure prediction with few-shot learning method
por: Nazari, Jamal, et al.
Publicado: (2022)