Cargando…
EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions
Although target detection based on electroencephalogram (EEG) signals has been extensively investigated recently, EEG-based target detection under weak hidden conditions remains a problem. In this paper, we proposed a rapid serial visual presentation (RSVP) paradigm for target detection correspondin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670035/ https://www.ncbi.nlm.nih.gov/pubmed/38002543 http://dx.doi.org/10.3390/brainsci13111583 |
_version_ | 1785139829135114240 |
---|---|
author | Lian, Jinling Qiao, Xin Zhao, Yuwei Li, Siwei Wang, Changyong Zhou, Jin |
author_facet | Lian, Jinling Qiao, Xin Zhao, Yuwei Li, Siwei Wang, Changyong Zhou, Jin |
author_sort | Lian, Jinling |
collection | PubMed |
description | Although target detection based on electroencephalogram (EEG) signals has been extensively investigated recently, EEG-based target detection under weak hidden conditions remains a problem. In this paper, we proposed a rapid serial visual presentation (RSVP) paradigm for target detection corresponding to five levels of weak hidden conditions quantitively based on the RGB color space. Eighteen subjects participated in the experiment, and the neural signatures, including P300 amplitude and latency, were investigated. Detection performance was evaluated under five levels of weak hidden conditions using the linear discrimination analysis and support vector machine classifiers on different channel sets. The experimental results showed that, compared with the benchmark condition, (1) the P300 amplitude significantly decreased (8.92 ± 1.24 μV versus 7.84 ± 1.40 μV, p = 0.021) and latency was significantly prolonged (582.39 ± 25.02 ms versus 643.83 ± 26.16 ms, p = 0.028) only under the weakest hidden condition, and (2) the detection accuracy decreased by less than 2% (75.04 ± 3.24% versus 73.35 ± 3.15%, p = 0.029) with a more than 90% reduction in channel number (62 channels versus 6 channels), determined using the proposed channel selection method under the weakest hidden condition. Our study can provide new insights into target detection under weak hidden conditions based on EEG signals with a rapid serial visual presentation paradigm. In addition, it may expand the application of brain–computer interfaces in EEG-based target detection areas. |
format | Online Article Text |
id | pubmed-10670035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106700352023-11-12 EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions Lian, Jinling Qiao, Xin Zhao, Yuwei Li, Siwei Wang, Changyong Zhou, Jin Brain Sci Article Although target detection based on electroencephalogram (EEG) signals has been extensively investigated recently, EEG-based target detection under weak hidden conditions remains a problem. In this paper, we proposed a rapid serial visual presentation (RSVP) paradigm for target detection corresponding to five levels of weak hidden conditions quantitively based on the RGB color space. Eighteen subjects participated in the experiment, and the neural signatures, including P300 amplitude and latency, were investigated. Detection performance was evaluated under five levels of weak hidden conditions using the linear discrimination analysis and support vector machine classifiers on different channel sets. The experimental results showed that, compared with the benchmark condition, (1) the P300 amplitude significantly decreased (8.92 ± 1.24 μV versus 7.84 ± 1.40 μV, p = 0.021) and latency was significantly prolonged (582.39 ± 25.02 ms versus 643.83 ± 26.16 ms, p = 0.028) only under the weakest hidden condition, and (2) the detection accuracy decreased by less than 2% (75.04 ± 3.24% versus 73.35 ± 3.15%, p = 0.029) with a more than 90% reduction in channel number (62 channels versus 6 channels), determined using the proposed channel selection method under the weakest hidden condition. Our study can provide new insights into target detection under weak hidden conditions based on EEG signals with a rapid serial visual presentation paradigm. In addition, it may expand the application of brain–computer interfaces in EEG-based target detection areas. MDPI 2023-11-12 /pmc/articles/PMC10670035/ /pubmed/38002543 http://dx.doi.org/10.3390/brainsci13111583 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lian, Jinling Qiao, Xin Zhao, Yuwei Li, Siwei Wang, Changyong Zhou, Jin EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions |
title | EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions |
title_full | EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions |
title_fullStr | EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions |
title_full_unstemmed | EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions |
title_short | EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions |
title_sort | eeg-based target detection using an rsvp paradigm under five levels of weak hidden conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670035/ https://www.ncbi.nlm.nih.gov/pubmed/38002543 http://dx.doi.org/10.3390/brainsci13111583 |
work_keys_str_mv | AT lianjinling eegbasedtargetdetectionusinganrsvpparadigmunderfivelevelsofweakhiddenconditions AT qiaoxin eegbasedtargetdetectionusinganrsvpparadigmunderfivelevelsofweakhiddenconditions AT zhaoyuwei eegbasedtargetdetectionusinganrsvpparadigmunderfivelevelsofweakhiddenconditions AT lisiwei eegbasedtargetdetectionusinganrsvpparadigmunderfivelevelsofweakhiddenconditions AT wangchangyong eegbasedtargetdetectionusinganrsvpparadigmunderfivelevelsofweakhiddenconditions AT zhoujin eegbasedtargetdetectionusinganrsvpparadigmunderfivelevelsofweakhiddenconditions |