Cargando…
The Identification of Fritillaria Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism
Combining deep learning and hyperspectral imaging (HSI) has proven to be an effective approach in the quality control of medicinal and edible plants. Nonetheless, hyperspectral data contains redundant information and highly correlated characteristic bands, which can adversely impact sample identific...
Autores principales: | Hu, Huiqiang, Xu, Zhenyu, Wei, Yunpeng, Wang, Tingting, Zhao, Yuping, Xu, Huaxing, Mao, Xiaobo, Huang, Luqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670081/ https://www.ncbi.nlm.nih.gov/pubmed/38002210 http://dx.doi.org/10.3390/foods12224153 |
Ejemplares similares
-
Identification of Turtle-Shell Growth Year Using Hyperspectral Imaging Combined with an Enhanced Spatial–Spectral Attention 3DCNN and a Transformer
por: Wang, Tingting, et al.
Publicado: (2023) -
Non-destructive prediction of isoflavone and starch by hyperspectral imaging and deep learning in Puerariae Thomsonii Radix
por: Hu, Huiqiang, et al.
Publicado: (2023) -
Unsupervised Hyperspectral Band Selection via Multimodal Evolutionary Algorithm and Subspace Decomposition
por: Wei, Yunpeng, et al.
Publicado: (2023) -
Towards Generating Realistic Wrist Pulse Signals Using Enhanced One Dimensional Wasserstein GAN
por: Chang, Jiaxing, et al.
Publicado: (2023) -
Deep Learning Combined with Hyperspectral Imaging Technology for Variety Discrimination of Fritillaria thunbergii
por: Kabir, Muhammad Hilal, et al.
Publicado: (2022)